
Graph Traversal with DFS/BFS

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Graph Traversal

One of the most fundamental graph problems is to traverse every
edge and vertex in a graph.

For correctness, we must do the traversal in a systematic way so that
we dont miss anything.

For efficiency, we must make sure we visit each edge at most twice.

Since a maze is just a graph, such an algorithm must be powerful
enough to enable us to get out of an arbitrary maze.

2 / 20

Marking Vertices

The key idea is that we must mark each vertex when we first visit it,
and keep track of what have not yet completely explored.

Each vertex will always be in one of the following three states:
1 undiscovered the vertex in its initial, virgin state.
2 discovered the vertex after we have encountered it, but before we have

checked out all its incident edges.
3 processed the vertex after we have visited all its incident edges.

A vertex cannot be processed before we discover it, so over the course
of the traversal the state of each vertex progresses from undiscovered
to discovered to processed.

3 / 20

To Do List

We must also maintain a structure containing all the vertices we have
discovered but not yet completely explored.

Initially, only a single start vertex is considered to be discovered.

To completely explore a vertex, we look at each edge going out of it.
For each edge which goes to an undiscovered vertex, we mark it
discovered and add it to the list of work to do.

Note that regardless of what order we fetch the next vertex to
explore, each edge is considered exactly twice, when each of its
endpoints are explored.

4 / 20

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

In what order should we process vertices?

1 First-in-first-out: if we use a queue to process discovered vertices, we
use breadth-first search

2 Last-in-first-out: if we use a stack to process discovered vertices, we
use depth-first search

5 / 20

Depth-First Traversal

Undirected Graph

a

b

c

d

ef

Discovered:

a

a

b

b

c

c

d

d

e

e

f

f
Processed:

e

e

d

d

c

c

b

b

f

f

a

a

Depth-First Search Tree

a

b

c

d

e

f

1

2
3

4

7

5

6

6 / 20

Recursive Depth-First Traversal Code

def r e c d f s (G, s , S=None) :
i f S i s None : S = set ()# I n i t i a l i z e the h i s t o r y
S . add (s) # We ’ ve v i s i t e d s
f o r u i n G [s] : # Exp l o r e n e i g hbo r s

i f u i n S : continue# Al r eady v i s i t e d : Sk ip
r e c d f s (G, u , S) # New : Exp l o r e r e c u r s i v e l y

>>> r e c d f s t e s t e d (G, 0)
[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]

7 / 20

Iterative Depth-First Traversal Code

def i t e r d f s (G, s) :
S , Q = set () , [] # V i s i t e d−s e t and queue
Q. append (s) # We p lan on v i s i t i n g s
whi le Q: # Planned nodes l e f t ?

u = Q. pop () # Get one
i f u i n S : continue# Al r eady v i s i t e d ? Sk ip i t
S . add (u) # We ’ ve v i s i t e d i t now
Q. e x t e n d (G [u]) # Schedu l e a l l n e i g hbo r s
y i e l d u # Report u as v i s i t e d

>>> l i s t (i t e r d f s (G, 0))
[0 , 5 , 7 , 6 , 2 , 3 , 4 , 1]

8 / 20

What does the yield command do?

When you execute a function, it normally returns values

Generators only execute code when iterated

Useful when you don’t need to keep the list of values you loop over

Especially helpful when the object you’re iterating over is very large,
and you don’t want to keep the entire object in memory

Nice explanation on Stack Overflow: http://stackoverflow.com/

questions/231767/the-python-yield-keyword-explained

9 / 20

Breadth-First Traversal

Undirected Graph

a

b

c

d

ef

Discovered:

a

a

b

b

e

e

f

f

c

c

d

d
Processed:

a

a

b

b

e

e

f

f

c

c

d

d

Breadth-First Search Tree

a

b e f

c d

1 2

3

4 6

5

7

10 / 20

Breadth-First Traversal Code

from c o l l e c t i o n s import deque
def i t e r b f s (G, s , S = None) :

S , Q = set () , deque () # V i s i t e d−s e t and queue
Q. append (s) # We p lan on v i s i t i n g s
whi le Q: # Planned nodes l e f t ?

u = Q. p o p l e f t () # Get one
i f u i n S : continue# Al r eady v i s i t e d ? Sk ip i t
S . add (u) # We ’ ve v i s i t e d i t now
Q. e x t e n d (G [u]) # Schedu l e a l l n e i g hbo r s
y i e l d u # Report u as v i s i t e d

11 / 20

Graph Traversal Exercises

12 / 20

http://stackoverflow.com/questions/231767/the-python-yield-keyword-explained
http://stackoverflow.com/questions/231767/the-python-yield-keyword-explained

Correctness of Graph Traversal

Every edge and vertex in the connected component is eventually
visited. Why?

Suppose it’s not correct, ie. there exists an unvisited vertex A whose
neighbor B was visited.

When B was visited, each of its neighbors was added to the list to be
processed. Since A is a neighbor of B, it must be visited before the
algorithm completes.

13 / 20

18

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding

nodes one "layer" at a time.

BFS algorithm.

・L0 = { s }.

・L1 = all neighbors of L0.

・L2 = all nodes that do not belong to L0 or L1, and that have an edge to a

node in L1.

・Li+1 = all nodes that do not belong to an earlier layer, and that have an

edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance exactly i
from s. There is a path from s to t iff t appears in some layer.

s L1 L2 Ln–1

14 / 20

19

Breadth-first search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G.

Then, the level of x and y differ by at most 1.

L0

L1

L2

L3

15 / 20

20

Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the

graph is given by its adjacency representation.

Pf.

・Easy to prove O(n2) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs ≤ n times
- when we consider node u, there are ≤ n incident edges (u, v),

and we spend O(1) processing each edge

・Actually runs in O(m + n) time:
- when we consider node u, there are degree(u) incident edges (u, v)
- total time processing edges is Σu∈V degree(u) = 2m. ▪

each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)

16 / 20

Identifying the shortest path between nodes in a graph

Fact: a path from node s to t in a breadth-first traversal is the
shortest path from s to t.

But how can we programmatically identify the shortest path between
two nodes?

By keeping track of each node’s parent when traversing the graph

17 / 20

Identifying the shortest path between nodes in a graph

def b f s p a r e n t s (G, s) :
from c o l l e c t i o n s import deque
P , Q = { s : None } , deque ([s])# Paren t s and FIFO queue
whi le Q:

u = Q. p o p l e f t () # Constant−t ime f o r deque
f o r v i n G [u] :

i f v i n P : continue # Al r eady has pa r en t
P [v] = u # Reached from u : u i s pa r en t
Q. append (v)

return P

18 / 20

Identifying the shortest path between nodes in a graph

N2 = {
’ a ’ : [’ b ’ , ’ c ’] ,
’ b ’ : [’ d ’] ,
’ c ’ : [’ e ’ , ’ f ’] ,
’ d ’ : [’ e ’] , # d
’ e ’ : [’ f ’ , ’ g ’] , # e
’ f ’ : [’ d ’] ,
’ g ’ : [’ f ’]

}
>>> P = b f s p a r e n t s (N2 , ’ a ’)
>>> P
{ ’ a ’ : None , ’ c ’ : ’ a ’ , ’ b ’ : ’ a ’ , ’ e ’ : ’ c ’ , ’ d ’ : ’ b ’ , ’ g ’ : ’ e ’ , ’ f ’ : ’ c ’ }

19 / 20

Identifying the shortest path between nodes in a graph

#get s h o r t e s t path from a to g
path = [’ g ’]
u = ’ g ’
whi le P [u] != ’ a ’ :

i f P [u] i s None : #g i v e up i f we f i n d the r oo t
p r i n t ’ path not found ’
break

path . append (P [u])
u = P [u]

path . append (P [u]) #don ’ t f o r g e t to add the sou r c e
path . r e v e r s e () #r e o r d e r the path to s t a r t from u r l 1
>>> p r i n t path
[’ a ’ , ’ c ’ , ’ e ’ , ’ g ’]

20 / 20

