Intractability Problem Reductions

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/-wayne/kleinberg-tardos. Some code reused from Python Algorithms by Magnus Lie Hetland.

SECTION 8.1

8. INTRACTABILITY I

poly-time reductions

- packing and covering problems
- > constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Algorithm design patterns and antipatterns

Algorithm design patterns.

- · Greedy.
- Divide and conquer.
- · Dynamic programming.
- · Duality.
- · Reductions.
- · Local search.
- · Randomization.

Algorithm design antipatterns.

- NP-completeness. $O(n^k)$ algorithm unlikely.
- PSPACE-completeness. $O(n^k)$ certification algorithm unlikely.
- Undecidability. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

von Neuman (1953)

Nash (1955)

(1956

Cobham (1964)

(1965)

Rabin (1966)

Theory. Definition is broad and robust.

constants a and b tend to be small, e.g., $3\,N^2$

Practice. Poly-time algorithms scale to huge problems.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

longest path
max cut
3-satisfiability
planar 3-colorability
vertex cover
3d-matching
factoring
teger linear programming

Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers,
 can black guarantee a win?

input size = c + lg k

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Polynomial-time reductions

Desiderata'. Suppose we could solve *X* in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem *X* polynomial-time (Cook) reduces to problem *Y* if arbitrary instances of problem *X* can be solved using:

- · Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece of hardware that solves instances of Y in a single step

Polynomial-time reductions

Desiderata'. Suppose we could solve *X* in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_P Y$.

Note. We pay for time to write down instances sent to oracle \Rightarrow instances of Y must be of polynomial size.

Caveat. Don't mistake $X \leq_P Y$ with $Y \leq_P X$.

8

Polynomial-time reductions

Design algorithms. If $X \le_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \le_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \le_P Y$ and $Y \le_P X$, we use notation $X =_P Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

SECTION 8.1

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Independent set

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?

- Ex. Is there an independent set of size ≥ 6 ?
- Ex. Is there an independent set of size ≥ 7 ?

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

- Ex. Is there a vertex cover of size ≤ 4 ?
- Ex. Is there a vertex cover of size ≤ 3 ?

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

independent set of size 6
vertex cover of size 4

13 / 42

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

=

- Let *S* be any independent set of size *k*.
- V-S is of size n-k.
- Consider an arbitrary edge (u, v).
- S independent \Rightarrow either $u \notin S$ or $v \notin S$ (or both)

 \Rightarrow either $u \in V - S$ or $v \in V - S$ (or both).

• Thus, V - S covers (u, v).

14/4

14 / 42

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

←

- Let V S be any vertex cover of size n k.
- *S* is of size *k*.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since V S is a vertex cover.
- Thus, no two nodes in S are joined by an edge ⇒ S independent set. ■

Set cover

SET-COVER. Given a set U of elements, a collection $S_1, S_2, ..., S_m$ of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U?

Sample application.

- *m* available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

$$U = \{1, 2, 3, 4, 5, 6, 7\}$$

$$S_{1} = \{3, 7\} \qquad S_{4} = \{2, 4\}$$

$$S_{2} = \{3, 4, 5, 6\} \qquad S_{5} = \{5\}$$

$$S_{3} = \{1\} \qquad S_{6} = \{1, 2, 6, 7\}$$

$$k = 2$$

a set cover instance

16

Vertex cover reduces to set cover

Theorem. VERTEX-COVER \leq_P SET-COVER.

Pf. Given a Vertex-Cover instance G = (V, E), we construct a Set-Cover instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe U = E.
- Include one set for each node $v \in V$: $S_v = \{e \in E : e \text{ incident to } v\}$.

$$U = \{1, 2, 3, 4, 5, 6, 7\}$$

$$S_a = \{3, 7\} \qquad S_b = \{2, 4\}$$

$$S_c = \{3, 4, 5, 6\} \qquad S_d = \{5\}$$

$$S_e = \{1\} \qquad S_f = \{1, 2, 6, 7\}$$

set cover instance (k = 2)

17 / 42

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

• Then $Y = \{ S_v : v \in X \}$ is a set cover of size k.

set cover instance (k = 2)

18 / 42

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \Leftarrow Let $Y \subseteq S$ be a set cover of size k in (U, S).

• Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G.

set cover instance (k = 2)

8. INTRACTABILITY I

- constraint satisfaction problems

SECTION 8.2

19 / 42 20 / 42

JON KLEINBERG • ÉVA TARDOS

Satisfiability

Literal. A boolean variable or its negation.

 x_i or $\overline{x_i}$

Clause. A disjunction of literals.

 $C_i = x_1 \vee \overline{x_2} \vee x_3$

Conjunctive normal form. A propositional formula Φ that is the conjunction of clauses. $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$

SAT. Given CNF formula Φ , does it have a satisfying truth assignment? 3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$\Phi \ = \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_3 \right) \ \land \ \left(\ x_1 \ \lor \ \overline{x_2} \ \lor \ x_3 \right) \ \land \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_4 \right)$$

yes instance: $x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false}$

Key application. Electronic design automation (EDA).

21 / 42

3-satisfiability reduces to independent set

Theorem. 3-SAT $\leq P$ INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- · Connect 3 literals in a clause in a triangle.
- · Connect literal to each of its negations.

G

k = 3

$$\Phi \ = \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_3 \right) \ \land \ \left(\ x_1 \ \lor \ \overline{x_2} \ \lor \ x_3 \right) \ \land \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_4 \right)$$

3-satisfiability reduces to independent set

Lemma. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.

- S must contain exactly one node in each triangle.
- Set these literals to true (and remaining variables consistently).
- · Truth assignment is consistent and all clauses are satisfied.

triangle. This is an independent set of size k.

G

k = 3

$$\Phi \ = \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_3 \right) \ \land \ \left(\ x_1 \ \lor \ \overline{x_2} \ \lor \ x_3 \right) \ \land \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_4 \right)$$

Review

Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET = P VERTEX-COVER.
- Special case to general case: VERTEX-COVER \leq_P SET-COVER.
- Encoding with gadgets: 3-SAT ≤ p INDEPENDENT-SET.

Transitivity. If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$.

Pf idea. Compose the two algorithms.

Ex. 3-SAT \leq_P INDEPENDENT-SET \leq_P VERTEX-COVER \leq_P SET-COVER.

SECTION 8.5

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems

sequencing problems

- partitioning problems
- graph coloring
- numerical problems

Hamilton cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V?

Hamilton cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V?

Directed hamilton cycle reduces to hamilton cycle

DIR-HAM-CYCLE: Given a digraph G = (V, E), does there exist a simple directed cycle Γ that contains every node in V?

Theorem. DIR-HAM-CYCLE $\leq p$ HAM-CYCLE.

Pf. Given a digraph G = (V, E), construct a graph G' with 3n nodes.

27 / 42

Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. ⇒

- Suppose G has a directed Hamilton cycle Γ .
- Then G' has an undirected Hamilton cycle (same order).

Pf. ←

- Suppose G' has an undirected Hamilton cycle Γ' .
- Γ' must visit nodes in G' using one of following two orders:

 $\dots, B, G, R, B, G, R, B, G, R, B, \dots$ $\dots, B, R, G, B, R, G, B, R, G, B, \dots$

 Blue nodes in Γ' make up directed Hamilton cycle Γ in G, or reverse of one.

31

29 / 43

3-satisfiability reduces to directed hamilton cycle

Theorem. $3-SAT \leq_P DIR-HAM-CYCLE$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamilton cycles which correspond in a natural way to 2^n possible truth assignments.

3

30 /

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = true$.

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

• For each clause, add a node and 6 edges.

3-satisfiability reduces to directed hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. ⇒

- Suppose 3-SAT instance has satisfying assignment x*.
- Then, define Hamilton cycle in G as follows:
- if $x^*_i = true$, traverse row *i* from left to right
- if $x_i^* = false$, traverse row *i* from right to left
- for each clause C_j , there will be at least one row i in which we are going in "correct" direction to splice clause node C_j into cycle (and we splice in C_j exactly once)

35

33 / 4

3-satisfiability reduces to directed hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. ←

- Suppose G has a Hamilton cycle Γ .
- If Γ enters clause node C_i , it must depart on mate edge.
- nodes immediately before and after C_i are connected by an edge $e \in E$
- removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G-\{\,C_j\,\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G-\{C_1,C_2,...,C_k\}$.
- Set $x^*_i = true$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node C_j , at least one of the paths is traversed in "correct" direction, and each clause is satisfied. •

36

34 /

3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph G = (V, E), does there exists a simple path consisting of at least k edges?

Theorem. 3-SAT $\leq p$ LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.

Pf 2. Show Ham-Cycle $\leq p$ Longest-Path.

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

3

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array http://www.tsp.gatech.edu

38 / 4

37 / 42

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

optimal TSP tour http://www.tsp.gatech.edu

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V?

Theorem. HAM-CYCLE $\leq p$ TSP.

Pf.

 $d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in I \\ 2 & \text{if } (u, v) \notin I \end{cases}$

• TSP instance has tour of length $\leq n$ iff G has a Hamilton cycle. •

Remark. TSP instance satisfies triangle inequality: $d(u, w) \le d(u, v) + d(v, w)$.

12

Karp's 21 NP-complete problems

