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Algorithm design patterns and antipatterns

Algorithm design patterns.
* Greedy.
« Divide and conquer.
¢ Dynamic programming.
* Duality.
» Reductions.
e Local search.
* Randomization.

Algorithm design antipatterns.
* NP-completeness. O(n*) algorithm unlikely.
* PSPACE-completeness. O(n¥) certification algorithm unlikely.
* Undecidability. No algorithm possible.
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SECTION 8.1

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

A !

[}

von Neumann Nash Godel Cobham Edmonds
(1953) (1955) (1956) (1964) (1965)

Theory. Definition is broad and robust.

constants a and b tend to be small, e.g., 3 N?

Practice. Poly-time algorithms scale to huge problems.
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Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

yes probably no

shortest path longest path
min cut max cut
2-satisfiability 3-satisfiability
planar 4-colorability planar 3-colorability
bipartite vertex cover vertex cover
matching 3d-matching
primality testing factoring

linear programming integer linear programming

Polynomialtime reductions

Desiderata'. Suppose we could solve X in polynomial-time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

* Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

— Algorithm —
—

for Y ——> solutionSto |

instance | —

(of X)

Algorithm for X
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Classify problems

Desiderata. Classify problems according to those that can be solved in
polynomial time and those that cannot.

input size =c + Ig k

Provably requires exponential time. /
* Given a constant-size program, does it halt in at most k steps?
* Given a board position in an n-by-n generalization of checkers,
can black guarantee a win? N

using forced capture rule

Al desgned the ot compte

Frustrating news. Huge number of fundamental problems have defied
classification for decades.

Polynomialtime reductions

Desiderata'. Suppose we could solve X in polynomial-time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

* Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

Notation. X<,Y.

Note. We pay for time to write down instances sent to oracle =
instances of ¥ must be of polynomial size.

Caveat. Don't mistake X<, Y with Y<,X.
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Polynomialtime reductions

Design algorithms. If X<, Y and Y can be solved in polynomial time,
then X can be solved in polynomial time.

Establish intractability. If X<, Y and X cannot be solved in polynomial time,
then Y cannot be solved in polynomial time.

Establish equivalence. If both X<, Y and Y=<,X, we use notation X=,Y.
In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
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Independent set

INDEPENDENT-SET. Given a graph G =(V, E) and an integer k, is there a subset
of vertices SC V such that I S| = k, and for each edge at most one of its
endpoints isin §?

Ex. Is there an independent set of size 267
Ex. Is there an independent set of size >77?

. independent set of size 6
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Vertex cover

VERTEX-COVER. Given a graph G =(V, E) and an integer k, is there a subset of
vertices S C V such that | S| < k, and for each edge, at least one of its
endpoints isin §?

Ex. Is there a vertex cover of size <47?
Ex. Is there a vertex cover of size <37

. independent set of size 6

O vertex cover of size 4
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Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set of size k iff V- S is a vertex cover

of size n—k.

independent set of size 6

vertex cover of size 4

0@

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set of size k iff V- S is a vertex cover

of size n—k.

=

Let V- S be any vertex cover of size n—k.

S is of size k.

Consider two nodes u €S and vES.

Observe that (u,v) € E since V- S is a vertex cover.

Thus, no two nodes in S are joined by an edge = S independent set. =

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n—k.

=
* Let S be any independent set of size k.
* V-Sis of size n—k.
* Consider an arbitrary edge (u, v).
e Sindependent = eitheru &S or v & S (or both)
= eitheru € V-SorveE V-S(or both).
* Thus, V- S covers (u,v).

Set cover

SET-Cover. Given a set U of elements, a collection S, 5,, ..., S,, of subsets of
U, and an integer k, does there exist a collection of <k of these sets whose
union is equal to U?

Sample application.
* m available pieces of software.
* Set U of n capabilities that we would like our system to have.
* The i piece of software provides the set S; C U of capabilities.
* Goal: achieve all n capabilities using fewest pieces of software.

U={1,2,3,4,5,6,7}

S ={3,7} S,={2,4}
Ss={5)
S=41

k=2

a set cover instance



Vertex cover reduces to set cover

Theorem. VERTEX-COVER < , SET-COVER.
Pf. Given a VERTEX-COVER instance G = (V, E), we construct a SET-COVER
instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

¢ Universe U=E.
* Include one set for each node vEV: S, ={¢EE: eincidenttov }.

@ ®

. & o & U={1,2,3,4,5,6,7}
os,={3.7) S,={2,4}
Q) & ©) {5.={3.456) S={5}
ka2 © ® @ & Los=(1) S = {1.2,6,7}
vertex cover instance set cover instance
k=2 (k=2
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Vertex cover reduces to set cover

Lemma. G =(V,E) contains a vertex cover of size kiff (U, S) contains a set
cover of size k.

Pf. < LetY C S be a set cover of size kin (U, ).
* Then X={v:S,EY}is avertex cover of size k in G. =

€7 €

e P U={1,2,3,4567}
{s,={3.7} S,={2.4}
() e © G—Gise) s
- e &s ios,={1} S, =1{1,2,6,7} ) |

vertex cover instance set cover instance
(k=2) (k=2)
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Vertex cover reduces to set cover

Lemma. G =(V,E) contains a vertex cover of size k iff (U, S) contains a set

cover of size k.

Pf. = Let X C V be a vertex cover of size k in G.
* Then Y={S,:vEX}is a set cover of size k. =

€7 €

[ ] e

vertex cover instance
(k =2)

%c
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€4

€s

U={1,2,3,4,5,6,7}

S,={3,7} S,={2,4}
Sa={5}
5= (1)

set cover instance
(k=2)
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Satisfiability 3-satisfiability reduces to independent set

Literal. A boolean variable or its negation. X; or X; Theorem. 3-SAT <p INDEPENDENT-SET.
Pf. Given an instance ® of 3-SAT, we construct an instance (G, k) of
Clause. A disjunction of literals. C,=x v xj VX3 INDEPENDENT-SET that has an independent set of size k iff @ is satisfiable.
Conjunctive normal form. A propositional ® = CAaCnA Cya C, Construction.
formula ® that is the conjunction of clauses. * G contains 3 nodes for each clause, one for each literal.
» Connect 3 literals in a clause in a triangle.
SAT. Given CNF formula @, does it have a satisfying truth assignment? » Connect literal to each of its negations.

3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

®=(;,vx2Vx3)A(x]v;2vx3)A(;,vxzvx4); G

yes instance: x; = true, x, = true, x; = false, x, = false

X X3 X X3 X Xy
Key application. Electronic design automation (EDA).

k=3
CD=(ZVX2V)C3)/\(X]VX72VX3) A(;vxzvx4)

21
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3-satisfiability reduces to independent set Review
Lemma. G contains independent set of size k=1®1 iff ® is satisfiable. Basic reduction strategies.

» Simple equivalence: INDEPENDENT-SET = , VERTEX-COVER.
Pf. = Let S be independent set of size k. » Special case to general case: VERTEX-COVER <, SET-COVER.
* S must contain exactly one node in each triangle. * Encoding with gadgets: 3-SAT <, INDEPENDENT-SET.

* Set these literals to frue (and remaining variables consistently).
« Truth assignment is consistent and all clauses are satisfied.
Transitivity. If X<,Yand Y<,Z, then X<,Z.
Pf < Given satisfying assignment, select one true literal from each Pfidea. Compose the two algorithms.
triangle. This is an independent set of size k. =

Ex. 3-SAT =<p INDEPENDENT-SET <, VERTEX-COVER <, SET-COVER.

X X2 2

X, X3 X X3 X X4

<D=(x1vxzvx3)/\(x]vx2vx3) /\(,\']VXZVX4)



Hamilton cycle

HAm-CyCLE. Given an undirected graph G = (V, E), does there exist a simple

8. INTRACTABILITY | cycle T that contains every node in v ?

» sequencing problems
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Hamilton cycle Directed hamilton cycle reduces to hamilton cycle
Ham-CyCLE. Given an undirected graph G = (V, E), does there exist a simple DIR-HAM-CYCLE: Given a digraph G =(V, E), does there exist a simple directed
cycle T that contains every node in vV ? cycle T that contains every node in vV ?

Theorem. DIR-HAM-CYCLE < , HAM-CYCLE.

Pf. Given a digraph G =(V, E), construct a graph G' with 3n nodes.

@ © 6

®

A/
\/
,/:\e

@ ® @ ® ©

no
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Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. =
* Suppose G has a directed Hamilton cycle T.
* Then G' has an undirected Hamilton cycle (same order).

Pf. <=
* Suppose G' has an undirected Hamilton cycle I"'.
* T'" must visit nodes in G' using one of following two orders:
..B,G,R,B,G,R,B,G,R,B, ...
..B,R,G,B,R,G,B,R,G,B, ...
* Blue nodes in I'" make up directed Hamilton cycle I' in G,
or reverse of one. =
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3-satisfiability reduces to directed hamilton cycle
Construction. Given 3-SAT instance ® with n variables x; and k clauses.
* Construct G to have 2" Hamilton cycles.
* Intuition: traverse path i from left to right < set variable x;= rrue.
s
X1
j——@—— O x
—Q+——0O ) X3
®
3k +3 3

3-satisfiability reduces to directed hamilton cycle

Theorem. 3-SAT <, DIR-HAM-CYCLE.

Pf. Given an instance ® of 3-SAT, we construct an instance of DIR-HAM-CYCLE
that has a Hamilton cycle iff ® is satisfiable.

Construction. First, create graph that has 2» Hamilton cycles which
correspond in a natural way to 2" possible truth assignments.

30

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance @ with n variables x; and k clauses.

CIause "°de : @

» For each clause, add a node and 6 edges.

“ ®
\\\\‘

| = <~'

O O O N .9 O x

,‘ X1

) X2

3k + 3 3
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3-satisfiability reduces to directed hamilton cycle

Lemma. @ is satisfiable iff G has a Hamilton cycle.

Pf. =
* Suppose 3-SAT instance has satisfying assignment x*.
* Then, define Hamilton cycle in G as follows:
- if x*; = true, traverse row i from left to right
- if x*, = false, traverse row i from right to left
- for each clause G, there will be at least one row i in which we are
going in "correct” direction to splice clause node C;into cycle
(and we splice in C; exactly once)

3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph G =(V, E), does there exists a simple
path consisting of at least k edges?

Theorem. 3-SAT <, LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from ¢ to s.
Pf 2. Show HAM-CYCLE < , LONGEST-PATH.

3-satisfiability reduces to directed hamilton cycle

Lemma. & is satisfiable iff G has a Hamilton cycle.

Pf. <

* Suppose G has a Hamilton cycle T.

* If T enters clause node C;, it must depart on mate edge.
- nodes immediately before and after C;are connected by an edge e € E
- removing C; from cycle, and replacing it with edge e yields Hamilton

cycleon G-{C; }

* Continuing in this way, we are left with a Hamilton cycle I'" in
G -{C.Cy,.... Ci}.

» Set x*, = true iff ' traverses row i left to right.

* Since T visits each clause node C;, at least one of the paths is traversed
in "correct” direction, and each clause is satisfied. =

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

13,509 cities in the United States
http:/ /www.tsp.gatech.edu
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Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

optimal TSP tour
http:/ /www.tsp.gatech.edu 39
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Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

optimal TSP tour
http:/ /www.tsp.gatech.edu o
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Traveling salesperson problem

TSP. Given a set of « cities and a pairwise distance function d(u, v),
is there a tour of length <D?

11,849 holes to drill in a programmed logic array
http:/ /www.tsp.gatech.edu

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

HAm-CycLE. Given an undirected graph G = (V, E), does there exist a simple
cycle T that contains every node in V?

Theorem. HAM-CYCLE <, TSP.
Pf.
* Given instance G = (V, E) of HAM-CYCLE, create n cities with distance
function 1 if(u, v) € E

dlu. v) = {2 if (u, v) & E

* TSP instance has tour of length < » iff G has a Hamilton cycle. =

Remark. TSP instance satisfies triangle inequality: d(u, w) < d(u, v) + d(v, w).

40
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Polynomialtime reductions

constraint satisfaction
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VERTEX-COVER HAM-CYCLE PLANAR-3-COLOR
SET-COVER TSP
packing and covering sequencing partitioning

SUBSET-SUM

SCHEDULING

numerical

Karp's 21 NP-complete problems

96

SATISFIABILITY\

CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE _ SET ~ 5
//COVER\ PACKING (‘HROMAT/IC NUMBER\
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SEQUENCING PARTITION

MAX CUT

FIGURE 1 - Complete Problems
7 i
Dick Karp (1972)
1985 Turing Award
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