
Intractability
Problem Reductions

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos. Some code reused from Python Algorithms by Magnus Lie

Hetland.

SECTION 8.1

8. INTRACTABILITY I

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

2 / 42

3

Algorithm design patterns and antipatterns

Algorithm design patterns.

・Greedy.

・Divide and conquer.

・Dynamic programming.

・Duality.

・Reductions.

・Local search.

・Randomization.

Algorithm design antipatterns.

・NP-completeness. O(nk) algorithm unlikely.

・PSPACE-completeness. O(nk) certification algorithm unlikely.

・Undecidability. No algorithm possible.

3 / 42

4

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

constants a and b tend to be small, e.g., 3 N 2

4 / 42

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

5

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

yes probably no

shortest path longest path

min cut max cut

2-satisfiability 3-satisfiability

planar 4-colorability planar 3-colorability

bipartite vertex cover vertex cover

matching 3d-matching

primality testing factoring

linear programming integer linear programming

5 / 42

6

Classify problems

Desiderata. Classify problems according to those that can be solved in

polynomial time and those that cannot.

Provably requires exponential time.

・Given a constant-size program, does it halt in at most k steps?

・Given a board position in an n-by-n generalization of checkers,

can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied

classification for decades.

input size = c + lg k

using forced capture rule

6 / 42

7

Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time.

What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if

arbitrary instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

instance I
(of X)

solution S to I
Algorithm

for Y

Algorithm for X

7 / 42

8

Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time.

What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if

arbitrary instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

Notation. X ≤ P Y.

Note. We pay for time to write down instances sent to oracle ⇒

instances of Y must be of polynomial size.

Caveat. Don't mistake X ≤ P Y with Y ≤ P X.

8 / 42

9

Polynomial-time reductions

Design algorithms. If X ≤ P Y and Y can be solved in polynomial time,

then X can be solved in polynomial time.

Establish intractability. If X ≤ P Y and X cannot be solved in polynomial time,

then Y cannot be solved in polynomial time.

Establish equivalence. If both X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y.

In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

9 / 42

SECTION 8.1

8. INTRACTABILITY I

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

10 / 42

11

Independent set

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset

of vertices S ⊆ V such that | S | ≥ k, and for each edge at most one of its

endpoints is in S ?

Ex. Is there an independent set of size ≥ 6 ?
Ex. Is there an independent set of size ≥ 7 ?

independent set of size 6

11 / 42

12

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of

vertices S ⊆ V such that | S | ≤ k, and for each edge, at least one of its

endpoints is in S ?

Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

vertex cover of size 4

independent set of size 6

12 / 42

13

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER ≡P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

independent set of size 6

vertex cover of size 4

13 / 42

14

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER ≡P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

⇒

・Let S be any independent set of size k.

・V − S is of size n – k.

・Consider an arbitrary edge (u, v).

・S independent ⇒ either u ∉ S or v ∉ S (or both)

 ⇒ either u ∈ V − S or v ∈ V − S (or both).

・Thus, V − S covers (u, v).

14 / 42

15

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER ≡P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

⇐

・Let V − S be any vertex cover of size n – k.

・S is of size k.

・Consider two nodes u ∈ S and v ∈ S.

・Observe that (u, v) ∉ E since V − S is a vertex cover.

・Thus, no two nodes in S are joined by an edge ⇒ S independent set. ▪

15 / 42

16

Set cover

SET-COVER. Given a set U of elements, a collection S1, S2, …, Sm of subsets of

U, and an integer k, does there exist a collection of ≤ k of these sets whose

union is equal to U ?

Sample application.

・m available pieces of software.

・Set U of n capabilities that we would like our system to have.

・The ith piece of software provides the set Si ⊆ U of capabilities.

・Goal: achieve all n capabilities using fewest pieces of software.

U = { 1, 2, 3, 4, 5, 6, 7 }
S1 = { 3, 7 } 	

 	

 S4 = { 2, 4 }
S2 = { 3, 4, 5, 6 }	

 S5 = { 5 }
S3 = { 1 }	

	

 	

 S6 = { 1, 2, 6, 7 }
k = 2

a set cover instance

16 / 42

Theorem. VERTEX-COVER ≤ P SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E), we construct a SET-COVER

instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

・Universe U = E.

・Include one set for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

d

c

17

Vertex cover reduces to set cover

vertex cover instance
(k = 2)

k = 2 e1

e2 e3

e5

e4

e6

e7

a b

e

f

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } 	

 	

 Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }	

 Sd = { 5 }

Se = { 1 }	

 	

 	

 Sf = { 1, 2, 6, 7 }

17 / 42

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set

cover of size k.

Pf. ⇒ Let X ⊆ V be a vertex cover of size k in G.

・Then Y = { Sv : v ∈ X } is a set cover of size k. ▪

18

Vertex cover reduces to set cover

vertex cover instance
(k = 2)

k = 2 e1

e2 e3

e5

e4

e6

e7

a

d

b

e

f c

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } 	

 	

 Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }	

 Sd = { 5 }

Se = { 1 }	

 	

 	

 Sf = { 1, 2, 6, 7 }

cf

18 / 42

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set

cover of size k.

Pf. ⇐ Let Y ⊆ S be a set cover of size k in (U, S).

・Then X = { v : Sv ∈ Y } is a vertex cover of size k in G. ▪

19

Vertex cover reduces to set cover

vertex cover instance
(k = 2)

k = 2 e1

e2 e3

e5

e4

e6

e7

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } 	

 	

 Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }	

 Sd = { 5 }

Se = { 1 }	

 	

 	

 Sf = { 1, 2, 6, 7 }

a

d

b

e

f ccf

19 / 42

SECTION 8.2

8. INTRACTABILITY I

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

20 / 42

Literal. A boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form. A propositional

formula Φ that is the conjunction of clauses.

SAT. Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals

(and each literal corresponds to a different variable).

Key application. Electronic design automation (EDA).

21

Satisfiability

€

Cj = x1 ∨ x2 ∨ x3

€

xi or xi

€

Φ = C1 ∧C2 ∧ C3∧ C4

yes instance: x1 = true, x2 = true, x3 = false, x4 = false

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

21 / 42

Theorem. 3-SAT ≤ P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of

INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

・G contains 3 nodes for each clause, one for each literal.

・Connect 3 literals in a clause in a triangle.

・Connect literal to each of its negations.

22

3-satisfiability reduces to independent set

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()
k = 3

G

22 / 42

23

3-satisfiability reduces to independent set

Lemma. G contains independent set of size k = | Φ | iff Φ is satisfiable.

Pf. ⇒ Let S be independent set of size k.

・S must contain exactly one node in each triangle.

・Set these literals to true (and remaining variables consistently).

・Truth assignment is consistent and all clauses are satisfied.

Pf ⇐ Given satisfying assignment, select one true literal from each

triangle. This is an independent set of size k. ▪

k = 3

G

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

23 / 42

24

Review

Basic reduction strategies.

・Simple equivalence: INDEPENDENT-SET ≡ P VERTEX-COVER.

・Special case to general case: VERTEX-COVER ≤ P SET-COVER.

・Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET.

Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.

Pf idea. Compose the two algorithms.

Ex. 3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER.

24 / 42

SECTION 8.5

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

8. INTRACTABILITY I

25 / 42

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple

cycle Γ that contains every node in V ?

28

Hamilton cycle

yes

26 / 42

29

Hamilton cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple

cycle Γ that contains every node in V ?

no

1

3

5

1'

3'

2

4

2'

4'

27 / 42

DIR-HAM-CYCLE: Given a digraph G = (V, E), does there exist a simple directed

cycle Γ that contains every node in V ?

Theorem. DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf. Given a digraph G = (V, E), construct a graph G' with 3n nodes.

vin

aout

bout

cout

ein

v vout

v

30

Directed hamilton cycle reduces to hamilton cycle

a

b

c

d

e

din

G G'

28 / 42

31

Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. ⇒

・Suppose G has a directed Hamilton cycle Γ.

・Then G' has an undirected Hamilton cycle (same order).

Pf. ⇐

・Suppose G' has an undirected Hamilton cycle Γ'.

・Γ' must visit nodes in G' using one of following two orders:

 …, B, G, R, B, G, R, B, G, R, B, …

 …, B, R, G, B, R, G, B, R, G, B, …

・Blue nodes in Γ' make up directed Hamilton cycle Γ in G,

or reverse of one. ▪

29 / 42

32

3-satisfiability reduces to directed hamilton cycle

Theorem. 3-SAT ≤ P DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE

that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create graph that has 2n Hamilton cycles which

correspond in a natural way to 2n possible truth assignments.

30 / 42

33

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.

・Construct G to have 2n Hamilton cycles.

・Intuition: traverse path i from left to right ⇔ set variable xi = true.

s

t

3k + 3

x1

x2

x3

31 / 42

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.

・For each clause, add a node and 6 edges.

clause node 2

34

3-satisfiability reduces to directed hamilton cycle

s

t

3k + 3

x1

x2

x3

clause node 1C1 = x1 � x2 � x3 C2 = x1 � x2 � x3

32 / 42

35

3-satisfiability reduces to directed hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. ⇒

・Suppose 3-SAT instance has satisfying assignment x*.

・Then, define Hamilton cycle in G as follows:

- if x*i = true, traverse row i from left to right

- if x*i = false, traverse row i from right to left
- for each clause Cj , there will be at least one row i in which we are

going in "correct" direction to splice clause node Cj into cycle

(and we splice in Cj exactly once)

33 / 42

36

3-satisfiability reduces to directed hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. ⇐

・Suppose G has a Hamilton cycle Γ.

・If Γ enters clause node Cj , it must depart on mate edge.
- nodes immediately before and after Cj are connected by an edge e ∈ E
- removing Cj from cycle, and replacing it with edge e yields Hamilton

cycle on G – { Cj }

・Continuing in this way, we are left with a Hamilton cycle Γ' in
G – { C1 , C2 , …, Ck }.

・Set x*i = true iff Γ' traverses row i left to right.

・Since Γ visits each clause node Cj , at least one of the paths is traversed

in "correct" direction, and each clause is satisfied. ▪

34 / 42

37

3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph G = (V, E), does there exists a simple

path consisting of at least k edges?

Theorem. 3-SAT ≤ P LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE ≤ P LONGEST-PATH.

35 / 42

38

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

13,509 cities in the United States
http://www.tsp.gatech.edu

36 / 42

39

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

optimal TSP tour
http://www.tsp.gatech.edu

37 / 42

40

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

11,849 holes to drill in a programmed logic array
http://www.tsp.gatech.edu

38 / 42

41

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

optimal TSP tour
http://www.tsp.gatech.edu

39 / 42

42

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple

cycle Γ that contains every node in V ?

Theorem. HAM-CYCLE ≤ P TSP.

Pf.

・Given instance G = (V, E) of HAM-CYCLE, create n cities with distance

function

・TSP instance has tour of length ≤ n iff G has a Hamilton cycle. ▪

Remark. TSP instance satisfies triangle inequality: d(u, w) ≤ d(u, v) + d(v, w).

€

d(u, v) =
 1 if (u, v) ∈ E
 2 if (u, v) ∉ E
⎧
⎨
⎩

40 / 42

75

Polynomial-time reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT p
oly-tim

e r
ed

uces

to IN
DEPE

NDEN
T-S

ET

GRAPH-3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR-3-COLOR

SET-COVER

numerical

constraint satisfaction

packing and covering sequencing partitioning

41 / 42

76

Karp's 21 NP-complete problems

Dick Karp (1972)
1985 Turing Award

42 / 42

