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3-SAT poly-time reduces to all of

these problems (and many, many more)

2

Recap

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT p
oly-tim

e reduces

to INDEPEN
DEN

T-S
ET

GRAPH-3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR-3-COLOR

SET-COVER

2 / 36

SECTION 8.3

8.  INTRACTABILITY II

‣ P vs. NP

‣ NP-complete

‣ co-NP

‣ NP-hard
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Decision problems

Decision problem.

・Problem X is a set of strings.

・Instance s is one string.

・Algorithm A solves problem X:  A(s) = yes iff s ∈ X.

Def.  Algorithm A runs in polynomial time if for every string s, A(s) 
terminates in at most p( | s | ) "steps", where p(⋅) is some polynomial. 

Ex.

・Problem PRIMES = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }.

・Instance s = 592335744548702854681.

・AKS algorithm PRIMES in O( | s | 8 ) steps.

length of s
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P.  Decision problems for which there is a poly-time algorithm.

Problem Description Algorithm yes no

MULTIPLE Is x a multiple of y ? grade-school division 51, 17 51, 16

REL-PRIME Are x and y relatively prime ? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime ? AKS (2002) 53 51

EDIT-DISTANCE
Is the edit distance between 

x and y less than 5 ?
dynamic 

programming
niether 
neither

acgggt 
ttttta

L-SOLVE
Is there a vector x that

satisfies Ax = b ?
Gauss-Edmonds 

elimination

ST-CONN
Is there a path between s

and t in a graph G ?
depth-first search

(Theseus)
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NP

Certification algorithm intuition.

・Certifier views things from "managerial" viewpoint.

・Certifier doesn't determine whether s ∈ X on its own;

rather, it checks a proposed proof t that s ∈ X.

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s,
s ∈ X iff there exists a string t such that C(s, t) = yes.

Def.  NP is the set of problems for which there exists a poly-time certifier.

・C(s, t) is a poly-time algorithm.

・Certificate t is of polynomial size:  | t | ≤  p( | s | ) for some polynomial p(⋅)

Remark.  NP stands for nondeterministic polynomial time.

6

"certificate" or "witness"
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COMPOSITES.  Given an integer s, is s composite?

Certificate.  A nontrivial factor t of s. Such a certificate exists iff s is 

composite.  Moreover | t | ≤ | s |.

Certifier.  Check that 1 < t < s and that s is a multiple of  t.

Conclusion.  COMPOSITES ∈ NP.

Certifiers and certificates:  composite

7

437,669 = 541 × 809

         instance s   437669
     certificate t  541 or 809
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3-SAT.  Given a CNF formula Φ, is there a satisfying assignment?

Certificate.  An assignment of truth values to the n boolean variables.

Certifier.  Check that each clause in Φ has at least one true literal.

Conclusion.  3-SAT ∈ NP.

Certifiers and certificates:  3-satisfiability

8

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )instance s

certificate t x1 = true,  x2 = true,  x3 = false,  x4 = false
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Certifiers and certificates:  Hamilton path

HAM-PATH.  Given an undirected graph G = (V, E), does there exist a simple 

path P that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly once, 

and that there is an edge between each pair of adjacent nodes.

Conclusion.  HAM-PATH ∈ NP.

instance s certificate t

9
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NP.  Decision problems for which there is a poly-time certifier.

Problem Description Algorithm yes no

L-SOLVE
Is there a vector x that

satisfies Ax = b ?
Gauss-Edmonds 

elimination

COMPOSITES Is x composite ? AKS (2002) 51 53

FACTOR
Does x have a nontrivial factor 

less than y ?
? (56159, 50) (55687, 50)

SAT
Is there a truth assignment that 

satisfies the formula ? ? ¬ x1 ∨  x2 
     x1 ∨  x2 

¬ x2 
¬ x1 ∨  x2 
     x1 ∨  x2 

3-COLOR
Can the nodes of a graph G be 

colored with 3 colors? 
?

HAM-PATH
Is there a simple path between 
s and t that visits every node? ?

Definition of NP
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Definition of NP

NP.  Decision problems for which there is a poly-time certifier.

11

“ NP captures vast domains of computational, scientific, and mathematical

   endeavors, and seems to roughly delimit what mathematicians and scientists

   have been aspiring to compute feasibly. ”     —   Christos Papadimitriou

“ In an ideal world it would be renamed P vs VP. ”     —   Clyde Kruskal
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P, NP, and EXP

P.  Decision problems for which there is a poly-time algorithm.

NP.  Decision problems for which there is a poly-time certifier.

EXP.  Decision problems for which there is an exponential-time algorithm.

Claim.  P  ⊆  NP.

Pf.  Consider any problem X ∈ P.

・By definition, there exists a poly-time algorithm A(s) that solves X.

・Certificate t = ε, certifier C(s, t) = A(s).   ▪

Claim.  NP  ⊆  EXP.

Pf.  Consider any problem X ∈ NP.

・By definition, there exists a poly-time certifier C(s, t) for X.

・To solve input s, run C(s, t) on all strings t with | t |  ≤  p(| s |).

・Return yes if C(s, t) returns yes for any of these potential certificates.   ▪

Remark.  Time-hierarchy theorem implies  P  ⊊  EXP.

12
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The main question:  P vs. NP

Q.  How to solve an instance of 3-SAT with n variables?

A.  Exhaustive search:  try all 2n truth assignments.

Q.  Can we do anything substantially more clever?

Conjecture.  No poly-time algorithm for 3-SAT.

13

"intractable"
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The main question:  P vs. NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

If yes.  Efficient algorithms for 3-SAT, TSP, 3-COLOR, FACTOR,  …

If no.  No efficient algorithms possible for 3-SAT, TSP, 3-COLOR, …

Consensus opinion.   Probably no.

EXP NP

P

If  P ≠ NP If  P = NP

EXP

P = NP

14

14 / 36

Possible outcomes

P ≠ NP.

15

“ I conjecture that there is no good algorithm for the traveling salesman

   problem. My reasons are the same as for any mathematical conjecture:  

(i) It is a legitimate mathematical possibility and (ii) I do not know.”  

            —   Jack Edmonds 1966

15 / 36

Possible outcomes

P ≠ NP.

16

“ In my view, there is no way to even make intelligent guesses about the

   answer to any of these questions. If I had to bet now, I would bet that

   P is not equal to NP. I estimate the half-life of this problem at 25–50

  more years, but I wouldn’t bet on it being solved before 2100. ”

            —   Bob Tarjan

“ We seem to be missing even the most basic understanding of the

   nature of its difficulty…. All approaches tried so far probably (in

   some cases, provably) have failed. In this sense P =NP is different

   from many other major mathematical problems on which a gradual

   progress was being constantly done (sometimes for centuries)

  whereupon they yielded, either completely or partially. ”

            —   Alexander Razborov

16 / 36



Possible outcomes

P = NP.

17

“ P = NP. In my opinion this shouldn’t really be a hard problem; it’s just

   that we came late to this theory, and haven’t yet developed any

   techniques for proving computations to be hard.  Eventually, it will

   just be a footnote in the books. ”      —   John Conway

17 / 36

Other possible outcomes

P = NP, but only Ω(n100) algorithm for 3-SAT.

P ≠ NP, but with O(nlog*n) algorithm for 3-SAT.

P = NP is independent (of ZFC axiomatic set theory).

18

“ It will be solved by either 2048 or 4096. I am currently somewhat

   pessimistic. The outcome will be the truly worst case scenario:

   namely that someone will prove “P = NP because there are only

   finitely many obstructions to the opposite hypothesis”; hence there

   will exists a polynomial time solution to SAT but we will never

   know its complexity! ”      —   Donald Knuth
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Millennium prize

Millennium prize.  $1 million for resolution of P = NP problem. 

19
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Looking for a job?

Some writers for the Simpsons and Futurama.

・J. Steward Burns.  M.S. in mathematics (Berkeley '93).

・David X. Cohen.  M.S. in computer science (Berkeley '92).

・Al Jean.  B.S. in mathematics. (Harvard '81).

・Ken Keeler.  Ph.D. in applied mathematics (Harvard '90).

・Jeff Westbrook.  Ph.D. in computer science (Princeton '89).

Copyright © 2000, Twentieth Century FoxCopyright © 1990, Matt Groening
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SECTION 8.4

8.  INTRACTABILITY II

‣ P vs. NP

‣ NP-complete

‣ co-NP

‣ NP-hard
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Polynomial transformation

Def.  Problem X polynomial (Cook) reduces to problem Y if arbitrary 

instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

Def.  Problem X polynomial (Karp) transforms to problem Y if given any 

input x to X, we can construct an input y such that x is a yes instance of X
iff y is a yes instance of Y. 

Note.  Polynomial transformation is polynomial reduction with just one call 

to oracle for Y, exactly at the end of the algorithm for X.  Almost all previous 

reductions were of this form. 

Open question.  Are these two concepts the same with respect to NP?

we require |y| to be of size polynomial in |x|

we abuse notation ≤ p and blur distinction

24
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NP-complete

NP-complete.  A problem Y ∈ NP with the property that for every

problem X ∈ NP, X ≤ p Y.

Theorem.  Suppose Y ∈ NP-complete. Then Y ∈ P iff P = NP.

Pf.  ⇐  If P = NP, then Y ∈ P because Y ∈ NP.

Pf.  ⇒  Suppose Y ∈ P.

・Consider any problem X ∈ NP.  Since X ≤ p Y, we have X ∈ P.

・This implies NP ⊆  P.

・We already know P ⊆  NP. Thus P = NP.  ▪

Fundamental question.  Do there exist "natural" NP-complete problems?

25
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CIRCUIT-SAT.  Given a combinational circuit built from AND, OR, and NOT gates, 

is there a way to set the circuit inputs so that the output is 1?

∧

¬

∧ ∨

∧

∨

1 0 ? ? ?

output

variable inputshard-coded inputs

yes:  1 0 1

Circuit satisfiability

26
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The "first" NP-complete problem

Theorem.  CIRCUIT-SAT ∈ NP-complete.  [Cook 1971, Levin 1973]
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The Complexity of Theorem-Proving Procedures 

Stephen A. Cook 

University of Toronto 

Summary 

It is shown that any recognition 
problem solved by a polynomial time- 
bounded nondeterministic Turing 
machine can be "reduced" to the pro- 
blem of determining whether a given 
propositional formula is a tautology. 
Here "reduced" means, roughly speak- 
ing, that the first problem can be 
solved deterministically in polyno- 
mial time provided an oracle is 
available for solving the second. 
From this notion of reducible, 
polynomial degrees of difficulty are 
defined, and it is shown that the 
problem of determining tautologyhood 
has the same polynomial degree as the 
problem of determining whether the 
first of two given graphs is iso- 
morphic to a subgraph of the second. 
Other examples are discussed. A 
method of measuring the complexity of 
proof procedures for the predicate 
calculus is introduced and discussed. 

Throughout this paper, a set of 
strings means a set of strings on 
some fixed, large, finite alphabet Z. 
This alphabet is large enough to in- 
clude symbols for all sets described 
here. All Turing machines are deter- 
ministic recognition devices, unless 
the contrary is explicitly stated. 

i. Tautologies and Polynomial Re- 
Reducibility. 

Let us fix a formalism for 
the propositional calculus in 
which formulas are written as 
strings on I. Since we will re- 
quire infinitely many proposition 
symbols (atoms), each such symbol 
will consist of a member of Z 
followed by a number in binary 
notation to distinguish that 
symbol. Thus a formula of length 
n can only have about n/logn 
distinct function and predicate 
symbols. The logical connectives 
are & (and), v (or), and ~(not). 

The set of tautologies 
(denoted by {tautologies}) is a 

certain recursive set of strings on 
this alphabet, and we are interested 
in the problem of finding a good 
lower bound on its possible recog- 
nition times. We provide no such 
lower bound here, but theorem 1 will 
give evidence that {tautologies} is 
a difficult set to recognize, since 
many apparently difficult problems 
can be reduced to determining tau- 
tologyhood. By reduced we mean, 
roughly speaking, that if tauto- 
logyhood could be decided instantly 
(by an "oracle") then these problems 
could be decided in polynomial time. 
In order to make this notion precise, 
we introduce query machines, which 
are like Turing machines with oracles 
in [I]. 

A query machine is a multitape 
Turing machine with a distinguished 
tape called the query tape, and 
three distinguished states called 
the query state, yes state, and n._o_ 
state, respectively. If M is a 
query machine and T is a set of 
strings, then a T-computation of M 
is a computation of M in which 
initially M is in the initial 
state and has an input string w on 
its input tape, and each time M 
assumes the query state there is a 
string u on the query tape, and 
the next state M assumes is the 
yes state if uET and the no state 
if u~T. We think of an "oracle", 
which knows T, placing M in the 
yes state or no state. 

Definition 

A set S of strings is P-redu- 
cible (P for polynomial) to a set 
T of strings iff there is some 
query machine M and a polynomial 
Q(n) such that for each input string 
w, the T-computation of M with in- 
put w halts within Q(Iwl) steps 
(lwl is the length of w~ and ends 
in an accepting state iff wcS. 

It is not hard to see that 
P-reducibility is a transitive re- 
lation. Thus the relation E on 

-151- 
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Theorem.  CIRCUIT-SAT ∈ NP-complete.

Pf sketch.

・Clearly, CIRCUIT-SAT ∈ NP.

・Any algorithm that takes a fixed number of bits n as input and

produces a yes or no answer can be represented by such a circuit.

・Moreover, if algorithm takes poly-time, then circuit is of poly-size.

・Consider any problem X ∈ NP.  It has a poly-time certifier C(s, t):
       s ∈ X iff there exists a certificate t of length p(| s |) such that C(s, t) = yes.

・View C(s, t) as an algorithm with | s | + p(| s |) input bits and convert it

into a poly-size circuit K.
- first | s | bits are hard-coded with s
- remaining p(| s |) bits represent (unknown) bits of t

・Circuit K is satisfiable iff C(s, t) = yes.

The "first" NP-complete problem

28

sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits
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Ex.  Construction below creates a circuit K whose inputs can be set so that it 

outputs 1 iff graph G has an independent set of size 2.

∧

¬

u-v

∨

1

independent set of size 2?

n inputs
(nodes in independent set)

hard-coded inputs
(graph description)

∨

∨

∧

u-w

0

∧

v-w

1

∧

u

?

∧

v

?

∧

w

?

∧

∨

set of size 2?

both endpoints of some
edge have been chosen?

independent set?

Example

u

v w

€ 

n
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

G = (V, E), n = 3
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Establishing NP-completeness

Remark.  Once we establish first "natural" NP-complete problem,

others fall like dominoes.

Recipe.  To prove that Y ∈ NP-complete:

・Step 1.  Show that Y ∈ NP.

・Step 2.  Choose an NP-complete problem X.

・Step 3.  Prove that X ≤ p Y. 

Theorem.  If X ∈ NP-complete, Y ∈ NP, and X ≤ p Y, then Y ∈ NP-complete.

Pf.  Consider any problem W ∈ NP.  Then, both W ≤ p X  and  X ≤ p Y.

・By transitivity, W ≤ p Y. 

・Hence Y ∈ NP-complete.  ▪ by definition of
NP-complete

30

by assumption
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CIRCUIT-SAT poly-time reduces to all of
these problems (and many, many more)

35

Implications of Karp

3-SAT
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SET-COVER

CIRCUIT-SAT
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Implications of Cook-Levin

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET
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3-SAT
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All of these problems (and many, many more)
poly-time reduce to CIRCUIT-SAT.
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Implications of Karp + Cook-Levin

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT poly-tim
e reduces

to INDEPENDENT-SET

GRAPH-3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR-3-COLOR

SET-COVER

CIRCUIT-SAT

All of these problems are NP-complete; they are 
manifestations of the same really hard problem.
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Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

・Packing + covering problems:  SET-COVER, VERTEX-COVER,INDEPENDENT-SET.

・Constraint satisfaction problems:  CIRCUIT-SAT, SAT, 3-SAT.

・Sequencing problems:  HAM-CYCLE, TSP.

・Partitioning problems: 3D-MATCHING, 3-COLOR.

・Numerical problems:  SUBSET-SUM, PARTITION.

Practice. Most NP problems are known to be either in P or NP-complete.

Notable exceptions.  FACTOR, GRAPH-ISOMORPHISM, NASH-EQUILIBRIUM. 

Theory. [Ladner 1975]  Unless P = NP, there exist problems in NP that are 

neither in P nor NP-complete.

38
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Garey and Johnson.  Computers and Intractability.

・Appendix includes over 300 NP-complete problems.

・Most cited reference in computer science literature.

More hard computational problems

39
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More hard computational problems

Aerospace engineering.  Optimal mesh partitioning for finite elements.

Biology.  Phylogeny reconstruction.

Chemical engineering.  Heat exchanger network synthesis.

Chemistry.  Protein folding.

Civil engineering.  Equilibrium of urban traffic flow.

Economics.  Computation of arbitrage in financial markets with friction.

Electrical engineering.  VLSI layout. 

Environmental engineering.  Optimal placement of contaminant sensors.

Financial engineering.  Minimum risk portfolio of given return.

Game theory.  Nash equilibrium that maximizes social welfare.

Mathematics.  Given integer a1, …, an, compute

Mechanical engineering.  Structure of turbulence in sheared flows.

Medicine.  Reconstructing 3d shape from biplane angiocardiogram.

Operations research.  Traveling salesperson problem.

Physics.  Partition function of 3d Ising model.

Politics.  Shapley-Shubik voting power.

Recreation.  Versions of Sudoko, Checkers, Minesweeper, Tetris.

Statistics.  Optimal experimental design.
40
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P vs. NP revisited

Overwhelming consensus (still).  P ≠ NP.

Why we believe P ≠ NP.

42

“ We admire Wiles' proof of Fermat's last theorem, the scientific theories of Newton,

   Einstein, Darwin, Watson and Crick, the design of the Golden Gate bridge and the

   Pyramids, precisely because they seem to require a leap which cannot be made by

   everyone, let alone a by simple mechanical device. ”        —   Avi Wigderson

NP

P NPC

P ≠ NP

P = NP

P = NP
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You NP-complete me

43

36 / 36


