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Recap

3-SAT

INDEPENDENT-SET DIR-HAM-CYCLE GRAPH-3-COLOR SUBSET-SUM

VERTEX-COVER Ham-CyCLE PLANAR-3-COLOR SCHEDULING

SET-COVER TSP 3-SAT poly-time reduces to all of

these problems (and many, many more)

Decision problems

Decision problem.
* Problem X is a set of strings.
* Instance s is one string.
» Algorithm A solves problem X: A(s) = yes iff s € X.

Def. Algorithm A runs in polynomial time if for every string s, A(s)
terminates in at most p(|s|) "steps”, where p(:) is some polynomial.

1

length of s

Ex.
* Problem PrRIMES ={2,3,5,7,11,13,17,23,29,31,37, .... }.
* Instance s = 592335744548702854681.
* AKS algorithm PRIMES in O(|s|?) steps.
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http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Definition of P

P. Decision problems for which there is a poly-time algorithm.

foern “

MuLTIPLE

NP

Certification algorithm intuition.
« Certifier views things from "managerial” viewpoint.
« Certifier doesn't determine whether s € X on its own;
rather, it checks a proposed proof ¢ that s € X.

Isxamultiple of y?  grade-school division 51, 17 51, 16 Def. Algorithm C(s, ) is a certifier for problem X if for every string s,
s € X iff there exists a string ¢ such that C(s, t) = yes.
REL-PRIME Are x and y relatively prime ? Euclid (300 BCE) 34, 39 34, 51
"certificate” or "witness"
PRIMES Is x prime ? AKS (2002) 53 51 . . . . .
Def. NP is the set of problems for which there exists a poly-time certifier.
EDIT-DISTANCE Is the edit distance between dynamic. nigther acgggt * C(s, 1 is a poly-time algorithm.
xand y less than 57 programming neither ttttta e . . X X
* Certificate ¢ is of polynomial size: 171< p(Isl) for some polynomial p(-)
L-SOLVE Is there a vector x that Gauss-Edmonds O B R I
satisfies Ax=57? elimination 0 3 15| |36 o1 1] [1
~ Is there a path between s depth-first search - ~, - . L . o
ST-CONN and 1in 2 graph G 7 (Theseus) < \\/ | > Remark. NP stands for nondeterministic polynomial time.

Certifiers and certificates: composite Certifiers and certificates: 3-satisfiability

ComposITES. Given an integer s, is s composite? 3-SAT. Given a CNF formula @, is there a satisfying assignment?
Certificate. A nontrivial factor ¢ of s. Such a certificate exists iff s is

Certificate. An assignment of truth values to the n boolean variables.
composite. Moreover ¢l <lsl.

Certifier. Check that each clause in ® has at least one true literal.
Certifier. Check that 1 <¢<s and that s is a multiple of .

instances 437669
certificatet 541 or 809

: instance s ®=(;vx VX)A(XV;VX)A(;VX vx)
| «— 437,669 =541 x 809 ! 2 3 ! 2 3 ! 2 4

certificate t x| = true, x2 = true, x3 = false, x4 = false

Conclusion. COMPOSITES € NP.

Conclusion. 3-SAT € NP.
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Certifiers and certificates: Hamilton path

HAM-PATH. Given an undirected graph G = (V, E), does there exist a simple
path P that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once,

and that there is an edge between each pair of adjacent nodes.

instance s certificate t

Conclusion. HAM-PATH € NP.

Definition of NP

NP. Decision problems for which there is a poly-time certifier.

“ NP captures vast domains of computational, scientific, and mathematical
endeavors, and seems to roughly delimit what mathematicians and scientists

have been aspiring to compute feasibly. ”  — Christos Papadimitriou

“In an ideal world it would be renamed P vs VP. ” — Clyde Kruskal
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Definition of NP

NP. Decision problems for which there is a poly-time certifier.

foern --

L-SOLVE Is there a vector x that Gaulss Edmonds g ; 2‘ i ‘: ‘: '
satisfies Ax=5b7? elimination 0315 0 1 1 |
COMPOSITES Is x composite ? AKS (2002) 53
Does x have a nontrivial factor
FACTOR ) ? (56159, 50) (55687, 50)
less than y?
Is there a truth assignment that X
SAT e 9 ? Tavoa XV X2
satisfies the formula ? X1V X2 MV
Can the nodes of a graph G be I PAVIRS
3-COLOR ? 7
colored with 3 colors? \‘7‘/ \‘>—<‘/

Is there a simple path between *
HAM-PATH ple b ? e X ~ /\X ~

s and r that visits every node?
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P, NP, and EXP
P. Decision problems for which there is a poly-time algorithm.
NP. Decision problems for which there is a poly-time certifier.
EXP. Decision problems for which there is an exponential-time algorithm.
Claim. P C NP.
Pf. Consider any problem X € P.
* By definition, there exists a poly-time algorithm A(s) that solves X.
* Certificate ¢ =¢, certifier C(s,1) = A(s). =
Claim. NP C EXP.
Pf. Consider any problem X € NP.
* By definition, there exists a poly-time certifier C(s, 1) for X.
e To solve input s, run C(s, ) on all strings ¢ with || < p(|s]).
* Return yes if C(s, ) returns yes for any of these potential certificates. =
Remark. Time-hierarchy theorem implies P < EXP.
12
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The main question: P vs. NP

Q. How to solve an instance of 3-SAT with » variables?
A. Exhaustive search: try all 27 truth assignments.

Q. Can we do anything substantially more clever?
Conjecture. No poly-time algorithm for 3-SAT.

%
“intractable"

P

Possible outcomes

P+ NP.

“ I conjecture that there is no good algorithm for the traveling salesman
problem. My reasons are the same as for any mathematical conjecture:
(i) It is a legitimate mathematical possibility and (ii) I do not know.”
— Jack Edmonds 1966
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The main question: P vs. NP

Does P =

NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]

Is the decision problem as easy as the certification problem?

If P+ NP If P=NP

If yes. Efficient algorithms for 3-SAT, TSP, 3-COLOR, FACTOR,
If no. No efficient algorithms possible for 3-SAT, TSP, 3-COLOR, ...

Consensus opinion. Probably no.

Possible outcomes

P+ NP.

“In my view, there is no way to even make intelligent guesses about the
answer to any of these questions. If I had to bet now, I would bet that
P is not equal to NP. I estimate the half-life of this problem at 25-50
more years, but I wouldn 't bet on it being solved before 2100.

— Bob Tarjan

“ We seem to be missing even the most basic understanding of the
nature of its difficulty.... All approaches tried so far probably (in
some cases, provably) have failed. In this sense P =NP is different
from many other major mathematical problems on which a gradual
progress was being constantly done (sometimes for centuries)

whereupon they yielded, either completely or partially.

— Alexander Razborov
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Possible outcomes Other possible outcomes

P = NP. P = NP, but only Q(n!%) algorithm for 3-SAT.
P = NP, but with O(nlz*r) algorithm for 3-SAT.
“ P = NP. In my opinion this shouldn t really be a hard problem; it’s just P = NP is independent (of ZFC axiomatic set theory).

that we came late to this theory, and haven t yet developed any

techniques for proving computations to be hard. Eventually, it will

Just be a footnote in the books. 7 — John Conway

“ It will be solved by either 2048 or 4096. I am currently somewhat

pessimistic. The outcome will be the truly worst case scenario:
namely that someone will prove “P = NP because there are only
finitely many obstructions to the opposite hypothesis”’; hence there
will exists a polynomial time solution to SAT but we will never

know its complexity! 7 — Donald Knuth
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Millennium prize Looking for a job?
Millennium prize. $1 million for resolution of P = NP problem. Some writers for the Simpsons and Futurama.
* J. Steward Burns. M.S.in mathematics (Berkeley '93).
* David X. Cohen. M.S.in computer science (Berkeley '92).
* Al Jean. B.S.in mathematics. (Harvard '81).
* Ken Keeler. Ph.D.in applied mathematics (Harvard '90).
* Jeff Westbrook. Ph.D.in computer science (Princeton '89).
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Polynomial transformation

Def. Problem X polynomial (Cook) reduces to problem Y if arbitrary
8. INTRACTABILITY |l instances of problem X can be solved using:
« Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.
» NP-complete
Def. Problem X polynomial (Karp) transforms to problem Y if given any
input x to X, we can construct an input y such that x is a yes instance of X
iff y is a yes instance of Y. T

Algorithm Desi I P—

JON KLEINBERG - EVA TARDOS

Note. Polynomial transformation is polynomial reduction with just one call
to oracle for Y, exactly at the end of the algorithm for X. Almost all previous

SECTION 8.4 . .
reductions were of this form.
Open question. Are these two concepts the same with respect to NP?
we abuse notation <p and blur distinction
24
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NP-complete Circuit satisfiability
NP-complete. A problem Y € NP with the property that for every CIRCUIT-SAT. Given a combinational circuit built from AND, OR, and NOT gates,
problem X € NP, X<, Y. is there a way to set the circuit inputs so that the output is 1?

Theorem. Suppose Y € NP-complete. Then Y € P iff P = NP.
Pf. <= If P = NP, then Y € P because Y € NP. output
Pf. = Suppose YEP.

* Consider any problem X € NP. Since X<, Y, we have X € P. @
« This implies NP C P. / \
* We already know P C NP. Thus P = NP. = @ @
yes: 101 ®/ ®/ \®
Fundamental question. Do there exist "natural” NP-complete problems? / v \ / \
1 0 ? ? ?

hard-coded inputs variable inputs
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The "first" NP-complete problem The "first" NP-complete problem

Theorem. CIRCUIT-SAT € NP-complete. [Cook 1971, Levin 1973] Theorem. CIRCUIT-SAT € NP-complete.
Pf sketch.
Clearly, CIRCUIT-SAT € NP.
Any algorithm that takes a fixed number of bits » as input and
RPATRICE CooBIEH A produces a yes or no answer can be represented by such a circuit.

VAR $1044

TPOBJIEMb IEPEXAYH HE®OPM AL
Tow 1x 0 Tn. 3

Moreover, if algorithm takes poly-time, then circuit is of poly-size.

sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

» Consider any problem X € NP. It has a poly-time certifier C(s, 1):
s € X iff there exists a certificate ¢ of length p(|s|) such that C(s, 1) = yes.
* View C(s, 1) as an algorithm with |s| + p(|s|) input bits and convert it
into a poly-size circuit K.
- first|s| bits are hard-coded with s
- remaining p(|s|) bits represent (unknown) bits of ¢
 Circuit K is satisfiable iff C(s, £) = yes.

25 /36 26 /36
Example Establishing NP-completeness
Ex. Construction below creates a circuit K whose inputs can be set so that it Remark. Once we establish first "natural” NP-complete problem,
outputs 1 iff graph G has an independent set of size 2. others fall like dominoes.

independ f size 22 i
@ R e Recipe. To prove that Y € NP-complete:

independent set? @/ » Step 1. Show that Y € NP.
A i @/' * Step 2. Choose an NP-complete problem X.
*+ Step 3. Prove that X<, Y.

edge have been chosen?

@ @ set of size 2?

/ Theorem. If X € NP-complete, Y € NP, and X <, Y, then Y € NP-complete.
@ Pf. Consider any problem W € NP. Then, both W<, X and X<,v.
/ « By transitivity, W=, Y. 1 1
* Hence Y € NP-complete. = Pl o by assumption

G=(V,E),n=3

(n] hard-coded inputs n inputs

2 ) (graph description) (nodes in independent set) 29
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Implications of Karp

s 3-SAT
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INDEPENDENT-SET DIR-HAM-CYCLE GRAPH-3-COLOR SUBSET-SUM

VERTEX-COVER HAM-CYCLE PLANAR-3-COLOR SCHEDULING
CIRCUIT-SAT poly-time reduces to all of
SET-COVER TSP these problems (and many, many more)

Implications of Karp + Cook-Levin

s 3-SAT
e W 25
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INDEPENDENT-SET DIR-HAM-CYCLE GRAPH-3-COLOR SUBSET-SUM
VERTEX-COVER HAM-CYCLE PLANAR-3-COLOR SCHEDULING

All of these problems are NP-complete; they are

SET-COVER TSP manifestations of the same really hard problem.

Implications of Cook-Levin

CIRCUIT-SAT
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INDEPENDENT-SET AR-HAM-C/CIE GRAPH-3-COLOR SUBSET-SUM

VERTEX-COVER ) HAM-CYILE PLANAR-3-COLOR SCHEDULING

All of these problems (and many, many more)

SET-COVER TSP poly-time reduce to CIRCUIT-SAT.

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.
» Packing + covering problems: SET-COVER, VERTEX-COVER,INDEPENDENT-SET.
« Constraint satisfaction problems: CIRCUIT-SAT, SAT, 3-SAT.
» Sequencing problems: HAM-CyCLE, TSP.
« Partitioning problems: 3D-MATCHING, 3-COLOR.
* Numerical problems: SUBSET-SUM, PARTITION.

Practice. Most NP problems are known to be either in P or NP-complete.

Notable exceptions. FACTOR, GRAPH-ISOMORPHISM, NASH-EQUILIBRIUM.

Theory. [Ladner 1975] Unless P = NP, there exist problems in NP that are
neither in P nor NP-complete.



More hard computational problems

Garey and Johnson. Computers and Intractability.
* Appendix includes over 300 NP-complete problems.

« Most cited reference in computer science literature.

Most Cited Computer Science Citations

“This list s generated from documents in the CiteSeerX database as of January 17, 2013, This listis automatically generated and may contain errors. The listis generated in batch
mode and citation counts may difer from those currently n the CiteSeer* database, since the database is continuously updated.

Al Years | 1990 | 19911 1992 ] 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 ] 2012 2013
MR Garey, D S Johnson

Computers and Intractabilty. A Guide to the Theory of NP-Completeness 1979
8665

T Cormen, C E Leiserson, R Rivest

Introduction to Aigorithms 1990

7210

VN Vapnk

The nature of statisicallearning theory 1998

6580

AP Dempster, N M Laird, D B Rubin

Maximum lilihood from incomplete data via the EM aigorithm. Journal of the Royal Statistical Saciety, 1977
6082

T Cover, J Thomas

Elements of Information Theory 1991

6075

DE Goldberg

Genetic Algoritnms in Search, Optimization, and Machine Learning, 1989

5998

Pearl

Probabilstc Reasoning in Itelligent Systems: Networks of Plausible Inference 1988
5562

E Gamma, R Helm, R Johnson, J Vissides

Design Patterns: Elements of Reusable Object-Oriented Software 1995

4614

GE Shannon

A mathematical theory of communication Bell Syst. Tech. J, 1848

4118

JR Quinlan

Ca.5: Programs for Machine Learning 1993

4018
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P vs. NP revisited
Overwhelming consensus (still). P = NP.
NP
P = NP P =NP
Why we believe P = NP.
“ We admire Wiles' proof of Fermat's last theorem, the scientific theories of Newton,
Einstein, Darwin, Watson and Crick, the design of the Golden Gate bridge and the
Pyramids, precisely because they seem to require a leap which cannot be made by
everyone, let alone a by simple mechanical device. ” — Avi Wigderson
42
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More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer aj, ..., a,, COMpute []-m(,,.u)m,\(.,_.u.x...w.,\(,.,,u, b
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Recreation. Versions of Sudoko, Checkers, Minesweeper, Tetris.
Statistics. Optimal experimental design.

You NP-complete me

You
NP-Complete
iMe
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