
Hashing

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/courses/archive/fall12/cos226/lectures.php.

3

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

・Computing the hash function.

・Equality test: Method for checking whether two keys are equal.

・Collision resolution: Algorithm and data structure

to handle two keys that hash to the same array index.

Classic space-time tradeoff.

・No space limitation: trivial hash function with key as index.

・No time limitation: trivial collision resolution with sequential search.

・Space and time limitations: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

2 / 22

5

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

・Efficiently computable.

・Each table index equally likely for each key.

Ex 1. Phone numbers.

・Bad: first three digits.

・Better: last three digits.

Ex 2. Social Security numbers.

・Bad: first three digits.

・Better: last three digits.

Practical challenge. Need different approach for each key type.

thoroughly researched problem,

still problematic in practical applications

573 = California, 574 = Alaska

(assigned in chronological order within geographic region)

key

table

index

3 / 22

13

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ π M / 2 tosses.

Coupon collector. Expect every bin has ≥ 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has

Θ (log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 / 22

http://www.cs.princeton.edu/courses/archive/fall12/cos226/lectures.php

16

Collisions

Collision. Two distinct keys hashing to same index.

・Birthday problem ⇒ can't avoid collisions unless you have

a ridiculous (quadratic) amount of memory.

・Coupon collector + load balancing ⇒ collisions are evenly distributed.

Challenge. Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

5 / 22

Options for dealing with collisions

1 Open hashing aka separate chaining: store collisions in a linked list
2 Closed hashing aka open addressing: keep keys in the table, shift to

unused space

Collision resolution policies

1 Linear probing
2 Quadratic probing aka quadratic residue search
3 Double hashing

6 / 22

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

・Hash: map key to integer i between 0 and M - 1.

・Insert: put at front of ith chain (if not already there).

・Search: need to search only ith chain.

17

Separate chaining symbol table

Hashing with separate chaining for standard indexing client

st[]
0

1

2

3

4

S 0X 7

E 12A 8

P 10L 11

R 3C 4H 5M 9

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

7 / 22

Proposition. Under uniform hashing assumption, prob. that the number of

keys in a list is within a constant factor of N / M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

Consequence. Number of probes for search/insert is proportional to N / M.

・M too large ⇒ too many empty chains.

・M too small ⇒ chains too long.

・Typical choice: M ~ N / 5 ⇒ constant-time ops.

20

Analysis of separate chaining

M times faster than

sequential search

equals() and hashCode()

Binomial distribution (N = 104 , M = 103 , ! = 10)

.125

0

0 10 20 30

(10, .12511...)

8 / 22

Closed hashing

Records stored directly in table of size M at hash index h(x) for key x

When a collision occurs:

Hashes to occupied home position
Record stored in first available slot based on repeatable collision
resolution policy
Formally, for each i collisions h0(x), h1(x), . . . hi (x) tried in succession
where hi (x) = (h(x) + f (i)) mod M

9 / 22

Closed hashing: insert

Hash(key) into table at position i
Repeat up to the size of the table {

If entry at position i in table is blank or marked as deleted
then insert and exit

Let i be the next position using the collision resolution function
}

10 / 22

Closed hashing: search

Hash(key) into table at position i
Repeat up to the size of the table {

If entry at position i in table matches key and not marked as deleted
then found and exit

If entry at position i in table is blank
then not found and exit

Let i be the next position using the collision resolution function
} Not found and exit

11 / 22

Closed hashing: delete

Hash(key) into table at position i
Repeat up to the size of the table {

If entry at position i in table matches key
then mark as deleted and exit

If entry at position i in table is blank
then not found and exit

Let i be the next position using the collision resolution function
} Not found and exit

12 / 22

Linear probing

Collision resolution function f (i) = i : hi (x) = (h(x) + i) mod M

Work example

13 / 22

Cluster. A contiguous block of items.

Observation. New keys likely to hash into middle of big clusters.

28

Clustering

14 / 22

Model. Cars arrive at one-way street with M parking spaces.

Each desires a random space i : if space i is taken, try i + 1, i + 2, etc.

Q. What is mean displacement of a car?

Half-full. With M / 2 cars, mean displacement is ~ 3 / 2.

Full. With M cars, mean displacement is ~ π M / 8 .

29

Knuth's parking problem

displacement = 3

15 / 22

Proposition. Under uniform hashing assumption, the average # of probes

in a linear probing hash table of size M that contains N = α M keys is:

Pf.

Parameters.

・M too large ⇒ too many empty array entries.

・M too small ⇒ search time blows up.

・Typical choice: α = N / M ~ ½.

30

Analysis of linear probing

� 1

2

�
1 +

1

1 � �

�
� 1

2

�
1 +

1

(1 � �)2

�

search hit search miss / insert

probes for search hit is about 3/2

probes for search miss is about 5/2

16 / 22

Performance comparison of search

Tree Worst-case cost Avg.-case cost
(after n inserts) (after n inserts) Ordered

search insert delete search insert delete iteration?

Sequential search
(unordered list) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) no
Binary search

(ordered array) Θ(log(n)) Θ(n) Θ(n) Θ(log(n)) Θ(n) Θ(n) yes
BST Θ(n) Θ(n) Θ(n) Θ(log(n)) Θ(log(n)) Θ(log(n)) yes
AVL Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) yes

B-tree Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) yes
Hash table Θ(n) Θ(n) Θ(n) Θ(1) Θ(1) Θ(1) no

17 / 22

Load factors and cost of probing

What size hash table do we need when using linear probing and a load
factor of α = 0.75 for closed hashing to achieve a more efficient
expected search time than a balanced binary search tree?

Search hit: 1
2(1 + 1

1−3/4) = 2.5

Search miss/insert: 1
2(1 + 1

(1−3/4)2) = 8.5

Thus we need a hash table of size M where log2M = 8.5, so
M ≥ 28.5 = 362

18 / 22

Load factors and cost of probing

0.0 0.2 0.4 0.6 0.8

1
2

5
10

20
50

load factor alpha

ex
pe

ct
ed

 #
 p

ro
be

s
in

se
rt

/s
ea

rc
h

m
is

s

al
ph

a
=

 0
.9

0.0 0.2 0.4 0.6 0.8

1
10

00
0

10
00

00
00

0
10

00
00

00
00

00
0

load factor alpha

br
ea

ke
ve

n
in

pu
t s

iz
e

ha
sh

 ta
bl

e/
B

S
T

al
ph

a
=

 0
.9

19 / 22

Quadratic probing

Collision resolution function f (i) = ±i2: hi (x) = (h(x)± i2) mod M

for 1 ≤ i ≤ (M−1)
2

M is a prime number of the form 4j + 3, which guarantees that the
probe sequence is a permutation of the table address space

Eliminates primary clustering (when collisions group together causing
more collisions for keys that hash to different values)

Work example

20 / 22

Double hashing

With quadratic probing, secondary clustering remains: keys that
collide must follow sequence of prior collisions to find an open spot

Double hashing reduces both primary and secondary clustering: probe
sequence is dependent on original key, not just one hash value

Collision resolution function f (i) = i · hb(x):
hi (x) = (hA(x) + i · hB(x)) mod M

Works best if M is prime

Our approach: hA(x) = x mod M, hB(x) = R − (x mod R) where
R is a prime < M.

21 / 22

Rehashing

We have already seen how hash table performance falls rapidly as the
table load factor approaches 1 (in practice, any load factor above 1/2
should be avoided)

To rehash: create a new table whose capacity M ′ is the first prime
more than twice as large as M

Scan through the old table and insert into the new table, ignoring
cells marked as deleted

Running time Θ(M)

Relatively expensive operation on its own
But good hash table implementations will only rehash when the table is
half full, then double in size, so the operation should be rare
Can even consider the cost amortized over the M/2 insertions as
constant addition to the insertions

22 / 22

