Greedy algorithms
Shortest paths in weighted graphs

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see
http://www.cs.princeton.edu/~wayne/kleinberg-tardos. Some code reused from Python Algorithms by Magnus Lie

Hetland.

Car navigation

Shortest-paths problem

Problem. Given a digraph G =(V, E), edge lengths ¢, > 0, source s €V,
and destination r €V, find the shortest directed path from s to ¢.

source s

| @%,é\
c%”o -

destination t

lengthof path =9 + 4 + 1 + 11 = 25

Shortest path applications

« PERT/CPM.

* Map routing.

« Seam carving.

* Robot navigation.

« Texture mapping.

« Typesetting in LaTeX.

« Urban traffic planning.

» Telemarketer operator scheduling.

* Routing of telecommunications messages.
* Network routing protocols (OSPF, BGP, RIP).
» Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

21

21

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

The many cases of finding shortest paths

@ We've already seen how to calculate the shortest path in an
unweighted graph (BFS traversal)

@ We'll now study how to compute the shortest path in different
circumstances for weighted graphs

@ Single-source shortest path on a weighted DAG
@ Single-source shortest path on a weighted graph with nonnegative
weights (Dijkstra’s algorithm)

Shortest paths in DAGs

@ Recursive approach to finding the shortest path from a to z
© Assume we already know the distance d(v) to z for each of a's
neighbors v € G[a]
@ Select the neighbor v that minimizes d(v) + W(a, v)

~
™)
=

Weighted Graph Data Structures

Nested Adjacency
Dictionaries w/ Edge Weights

N = {
'a':{'b’:2,'c’:1,'d":3,'e":9,'f
'b':{'c’':4,"e":3}

"c¢':{'d":8},

d' e’ T},

e’ {'f':5},
fri{tcri2, g 2, hi2},

‘g {'f":1,'"h’":6},
Jhe{'f:9,'g 8}

}

>>> 'b’ in N['a'] # Neighborhood
True

>>> len(N['f']) # Degree

3

>>> N['a']['b"]

Edge weight for (a, b)
2

Recursive solution to finding shortest path in DAGs

def rec_dag_sp(W, s, t): #Shortest path from s to t

©@memo #Memoize f
def d(u): #Distance from u to t
if u=— t: return 0#NVe're there!

Return the best of every first step
return min(W[u][v]+d(v) for v in W[u])
return d(s) #Apply f to actual start node

"4},

members}

Shortest paths in DAGs: lterative approach

@ The iterative solution is a bit more complicated
@ We must start with a topological sort
@ Keep track of an upper bound on the distance from a to each node,
initialized to oo
© Go through each vertex and relax the distance estimate by inspecting
the path from the vertex to its neighbor
@ In general, relaxing an edge (u, v) consists of testing whether we can
shorten the path to v found so far by going through u; if we can, we
update d[v] with the new value

@ Running time: ©(m + n)

Relaxing edges

inf = float(inf")
def relax(W, u, v, D, P):
d =D.get(u,inf) + W[u][v]# Possible shortcut estimate

if d <D.get(v,inf): # Is it really a shortcut?
D[v], P[v] =d, u # Update estimate and parent
return True # There was a change!

Relaxing edges

10/21
lterative solution to finding shortest path in DAGs
def dag sp(W, s, t): #Shortest path from s to t
d = {u:float('inf') for u in W} # Distance estil
d[s] =0 #Start node: Zero distance
for u in topsort(W): #In top—sorted order...
if u=— t: break #Have we arrived?
for v in W[u]: #For each out—edge .
d[v] = min(d[v], d[u] + W[u][v]) # Relax the edg
return dft] #Distance to t (from s)

Shortest-paths on weighted DAG example

Topological sort: a, c, b, d, e

d[Node]: upper bd. dist. from a
Node | init. 1 (u=a) 2 (u=c) 3 (u=b) 4 (u=d) 5 (u=e)
a 0 0 0 0 0 0
b 00 15 13 13 13 13
C 00 6 6 6 6 6
d o0 o0 9 9 9 9
e 00 00 11 11 10 10

But what if there are cycles?

With a DAG, we can select the order in which to visit nodes based on

the topological sort
With cycles we can't easily determine the best order

If there are no negative edges, we can traverse from the starting
vertex, visiting nodes in order of their estimated distance from the
starting vertex

In Dijkstra's algorithm, we use a priority queue based on minimum
estimated distance from the source to select which vertices to visit
Running time: ©((m + n)lgn)

Dijkstra’s algorithm combines approaches seen in other algorithms

© Node discovery: bit like breadth-first traversal
@ Node visitation: selected using priority queue

© Shortest path calculation: uses relaxation as in algorithm for shortest

paths in DAGs

Shortest-paths on weighted DAG: exercise

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined the shortest path distance d(x) from s to u.
« |nitialize S={s}, d(s)=0.
* Repeatedly choose unexplored node v which minimizes

= i d l,,
wt(v) e:(ﬂlf}ues w)+¢,

AN

shortest path to some node u in explored part,
followed by a single edge (u, v)

[E
d(u)
; @>
O

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined the shortest path distance d(x) from s to u.
« |nitialize S={s}, d(s)=0.
* Repeatedly choose unexplored node v which minimizes

n(v)= min d@u)+/{,,
e=(u,v):ues

AN

add v to S: and set d(V) = JT(V)- shortest path to some node u in explored part,
followed by a single edge (u, v)

d(v)
‘,

O

Dijkstra's algorithm: efficient implementation

Critical optimization 1. For each unexplored node v, explicitly
maintain m(v) instead of computing directly from formula:

a(v)= min du)+/{,.
‘uES

e=(uy):u

* Foreach vé&s, m(v) can only decrease (because S only increases).
* More specifically, suppose u is added to S and there is an edge (u,v)
leaving u. Then, it suffices to update:

a(v)=min{ (), dw)+ f(u,v)}

Critical optimization 2. Use a priority queue to choose the unexplored node
that minimizes t(v).

16 /21

Dijkstra's algorithm: proof of correctness

Invariant. For each node u €S, d(u) is the length of the shortest s~u path.

Pf. [by induction on IS1]

Base case: |SI=1is easy since S={s} and d(s) =0.
Inductive hypothesis: Assume true for ISI=k > 1.

* Let v be next node added to S, and let (u,v) be the final edge.

* The shortest s~u path plus (u,v) is an s~v path of length m(v).

* Consider any s~v path P. We show that it is no shorter than w(v).

* Let (x,y) be the first edge in P that leaves S,

and let P' be the subpath to x.
* Pis already too long as soon as it reaches y.

4P) = 4(P)+ l(x,y) = dx)+ (x,y) = @w(y) = (V) u ®
t t 1 1
nonnegative inductive definition Dijkstra chose v
lengths hypothesis of aly) instead of y

Dijkstra’s algorithm

from heapq import heappush, heappop

def dijkstra (G, s):
D, P, Q S = {s:0},
while Q:

S.add(u)
for v in G[u]:

heappush (Q,
return D, P

{3, [(0,s)], set() # Est.

i~
N

, tree, ¢

Still unprocessed nodes?
_, u = heappop(Q) # Node with lowest estimate
if uin S: continue # Already visited? Skip

We've visited it now

it

Go through all its neighbors
relax (G, u, v, D, P) # Relax the out—edge
(D[v], v))# Add to queue, w/est. as pri

Final D and P returned

Dijkstra’s algorithm example

d[Node]: upper bd. dist. from a

Node | init. 1 (u=a) 2 (u=c) 3 (u=e) 4 (u=b) 5 (u=d)
a 0 0 0 0 0 0
b 00 10 8 8 8 8
c 00 5 5 5 5 5
d 00 00 14 13 9 9
e 00 00 7 7 7 7

20/21

Dijkstra’s algorithm: exercise

21/21

