Greedy algorithms Shortest paths in weighted graphs

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see http://www.cs.princeton.edu/-wayne/kleinberg-tardos. Some code reused from Python Algorithms by Magnus Lie Hetland.

Car navigation

Shortest-paths problem

Problem. Given a digraph G = (V, E), edge lengths $\ell_e \ge 0$, source $s \in V$, and destination $t \in V$, find the shortest directed path from s to t.

length of path = 9 + 4 + 1 + 11 = 25

Shortest path applications

- PERT/CPM.
- · Map routing.
- · Seam carving.
- · Robot navigation.
- · Texture mapping.
- Typesetting in LaTeX.
- · Urban traffic planning.
- · Telemarketer operator scheduling.
- · Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- · Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuia, T. L. Magnanti, and I. B. Orlin, Prentice Hall, 1993.

The many cases of finding shortest paths

- We've already seen how to calculate the shortest path in an unweighted graph (BFS traversal)
- We'll now study how to compute the shortest path in different circumstances for *weighted* graphs
 - Single-source shortest path on a weighted DAG
 - Single-source shortest path on a weighted graph with nonnegative weights (Dijkstra's algorithm)

Weighted Graph Data Structures

Nested Adjacency Dictionaries w/ Edge Weights

5/21 6/21

Shortest paths in DAGs

- Recursive approach to finding the shortest path from a to z
 - **3** Assume we already know the distance d(v) to z for each of a's neighbors $v \in G[a]$
 - Select the neighbor v that minimizes d(v) + W(a, v)

Recursive solution to finding shortest path in DAGs

7/21 8/21

Shortest paths in DAGs: Iterative approach

- The iterative solution is a bit more complicated
 - We must start with a topological sort
 - ② Keep track of an upper bound on the distance from a to each node, initialized to ∞
 - Go through each vertex and relax the distance estimate by inspecting the path from the vertex to its neighbor
- In general, relaxing an edge (u, v) consists of testing whether we can shorten the path to v found so far by going through u; if we can, we update d[v] with the new value
- Running time: $\Theta(m+n)$

Relaxing edges

9/21

Relaxing edges


```
inf = float('inf')
def relax(W, u, v, D, P):
    d = D.get(u,inf) + W[u][v]# Possible shortcut estimate
    if d < D.get(v,inf): # Is it really a shortcut?
        D[v], P[v] = d, u # Update estimate and parent
        return True # There was a change!</pre>
```

Iterative solution to finding shortest path in DAGs

10 / 21 11 / 21

Shortest-paths on weighted DAG example

Topological sort: a, c, b, d, e

	d[Node]: upper bd. dist. from a							
Node	init.	1 (u=a)	2 (u=c)	3 (u=b)	4 (u=d)	5 (u=e)		
а	0	0	0	0	0	0		
b	∞	15	13	13	13	13		
С	∞	6	6	6	6	6		
d	∞	∞	9	9	9	9		
е	∞	∞	11	11	10	10		

12 / 21 13 / 21

Shortest-paths on weighted DAG: exercise

But what if there are cycles?

- With a DAG, we can select the order in which to visit nodes based on the topological sort
- With cycles we can't easily determine the best order
- If there are no negative edges, we can traverse from the starting vertex, visiting nodes in order of their estimated distance from the starting vertex
- In <u>Dijkstra's algorithm</u>, we use a priority queue based on minimum estimated distance from the source to select which vertices to visit
- Running time: $\Theta((m+n) \lg n)$
- Dijkstra's algorithm combines approaches seen in other algorithms
 - Node discovery: bit like breadth-first traversal
 - Node visitation: selected using priority queue
 - Shortest path calculation: uses relaxation as in algorithm for shortest paths in DAGs

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from S to U.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,$$
 shortest path to some node u in explored part, followed by a single edge (u, v)

6

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from s to u.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$
 add v to S , and set $d(v) = \pi(v)$. Shortest path to some node u in explored part, followed by a single edge (u,v)

16 / 21

Dijkstra's algorithm: efficient implementation

Critical optimization 1. For each unexplored node v, explicitly maintain $\pi(v)$ instead of computing directly from formula:

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e.$$

- For each $v \notin S$, $\pi(v)$ can only decrease (because S only increases).
- More specifically, suppose u is added to S and there is an edge (u, v)leaving u. Then, it suffices to update:

$$\pi(v) = \min \{ \pi(v), d(u) + \ell(u, v) \}$$

Critical optimization 2. Use a priority queue to choose the unexplored node that minimizes $\pi(v)$.

Dijkstra's algorithm: proof of correctness

```
Invariant. For each node u \in S, d(u) is the length of the shortest s \rightarrow u path.
Pf. [by induction on |S|]
```

Base case: |S| = 1 is easy since $S = \{s\}$ and d(s) = 0.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let (u, v) be the final edge.
- The shortest $s \rightarrow u$ path plus (u, v) is an $s \rightarrow v$ path of length $\pi(v)$.
- Consider any $s \rightarrow v$ path P. We show that it is no shorter than $\pi(v)$.
- Let (x, y) be the first edge in P that leaves S, and let P' be the subpath to x.
- *P* is already too long as soon as it reaches *y*.

inductive

hypothesis

Dijkstra's algorithm

nonnegative

lengths

```
from heapq import heappush, heappop
def dijkstra(G, s):
   D, P, Q, S = \{s:0\}, \{\}, [(0,s)], set()
                                                 # Est., tree, q
                              # Still unprocessed nodes?
    while Q:
                              # Node with lowest estimate
        _{-}, u = heappop(Q)
        if u in S: continue # Already visited? Skip it
        S.add(u)
                              # We've visited it now
                              # Go through all its neighbors
        for v in G[u]:
            relax(G, u, v, D, P) # Relax the out-edge
            heappush (Q, (D[v], v))# Add to queue, w/est. as pri
    return D, P
                              # Final D and P returned
```

19 / 21

Dijkstra's algorithm example

	d[Node]: upper bd. dist. from a								
Node	init.	1 (u=a)	2 (u=c)	3 (u=e)	4 (u=b)	5 (u=d)			
а	0	0	0	0	0	0			
b	∞	10	8	8	8	8			
С	∞	5	5	5	5	5			
d	∞	∞	14	13	9	9			
e	∞	∞	7	7	7	7			

Dijkstra's algorithm: exercise