Greedy algorithms
Coin Changing, Interval Scheduling, Interval Partitioning

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see
http://www.cs.princeton.edu/~wayne/kleinberg-tardos. Some code reused from Python Algorithms by Magnus Lie

Hetland.

Greedy algorithms

@ A greedy algorithm builds a solution incrementally, making the best
local decision to construct a global solution

@ The clever thing about greedy algorithms is that they find ways to
consider only a portion of the solution space at each step
@ We've already seen one greedy algorithm

o Gale-Shapley algorithm to solve stable-matching problem: men propose
to their best choice, women accept/decline without considering other
prospective offers

Greedy algorithms: greed is good?

Greed, for lack of a better word,
is good. Greed is right. Greed
works. Greed clarifies, cuts
through, and captures, the

Greed, in all of its forms; greed
for life, for money, for love,
knowledge, has marked the
upward surge of mankind and
greed, you mark my words, will
not only save Teldar Paper, but
that other malfunctioning
corporation called the U.S.A.

Coin changing

essence of the evolutionary spirit.

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method
to pay amount to customer using fewest number of coins.

Ex. 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value that
does not take us past the amount to be paid.

Ex. $2.89.

24

/24

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Cashier's algorithm

At each iteration, add coin of the largest value that does not take us past
the amount to be paid.

CASHIERS-ALGORITHM (X, c1, €2, ..., Cn)

SORT 7 coin denominations so that c1 <2 < ... <c¢p
S ¢ <«—— setof coins selected
WHILE x > 0
k <« largest coin denomination ¢ such that ¢x < x
IF no such k, RETURN "no solution"
ELSE
X X — ¢k
S —SU{k}
RETURN §

Q. Is cashier's algorithm optimal?

Analysis of cashier's algorithm

Theorem. Cashier's algorithm is optimal for U.S. coins: 1, 5, 10, 25, 100.
Pf. [by induction on x]
« Consider optimal way to change ¢; < x<¢, : greedy takes coin .
* We claim that any optimal solution must also take coin k.
- if not, it needs enough coins of type ¢, ..., ¢, to add up to x
- table below indicates no optimal solution can do this
« Problem reduces to coin-changing x — ¢, cents, which, by induction,

is optimally solved by cashier's algorithm. =

K . all optimal solutions max value of coins
« must satisfy Ci1, €2, ..., Ck-1 in any OPT
1 1 -

P<4
2 5 N<1 4
3 10 N+D <2 4+5=9
4 25 0<3 20 +4=24
5 100 no limit 75+24=99

~
N
=

Properties of optimal solution

Property. Number of pennies < 4.
Pf. Replace 5 pennies with 1 nickel.

Property. Number of nickels < 1.
Property. Number of quarters < 3.

Property. Number of nickels + number of dimes < 2.

Pf.
* Replace 3 dimes and 0 nickels with 1 quarter and 1 nickel;
* Replace 2 dimes and 1 nickel with 1 quarter.
* Recall: at most 1 nickel.

Cashier's algorithm for other denominations

Q. Is cashier's algorithm for any set of denominations?

A. No. Consider U.S. postage: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

e Cashier's algorithm: 140¢=100+34+1+1+1+1+1+1.
* Optimal: 140¢ =70 + 70.

sA]¢

A. No. It may not even lead to a feasible solution if c;>1: 7, 8, 9.
» Cashier's algorithm: 15¢ =9 + 772,
e Optimal: 15¢ =7+ 8.

Interval scheduling Interval scheduling: greedy algorithms

* Job starts at s; and finishes at f;. Greedy template. Consider jobs in some natural order.

» Two jobs compatible if they don't overlap. Take each job provided it's compatible with the ones already taken.
e Goal: find maximum subset of mutually compatible jobs.

+ [Earliest start time] Consider jobs in ascending order of s,

« [Earliest finish time] Consider jobs in ascending order of f.

a
“ + [Shortest interval] Consider jobs in ascending order of f,—s;.
C . A
» [Fewest conflicts] For each job j, count the number of
d — s damEa conflicting jobs ¢;. Schedule in ascending order of ¢;.
_ \7are incompatible
f /
| | | |
9
0 2 3 4 5 6 7 8 9 10 11
9
9/24
Interval scheduling: greedy algorithms Interval scheduling: earliest-finish-time-first algorithm
Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken. EARLIEST-FINISH-TIME-FIRST (1, 1, 82, ..., Su, fi, 2, oes i)
SORT jobs by finish time so that fi < 2 < ... < fy
counterexample for earliest start time A— ¢ <«— setof jobs selected
FOrRj=1TO n
IF job j is compatible with 4
A —AU{j}
counterexample for shortest interval RETURN 4

counterexample for fewest conflicts
Proposition. Can implement earliest-finish-time first in O(n log n) time.
| » Keep track of job j* that was added last to 4.
+ Job j is compatible with 4 iff s; > f..
* Sorting by finish time takes O(n log n) time.

Earliestfinish-time-first algorithm demo

time

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
* Assume greedy is not optimal, and let's see what happens.
e Let i, i, ... iydenote set of jobs selected by greedy.
e Letj,, j,, ---j,, denote set of jobs in an optimal solution with
iy =ji, i=js, ..., i, =j, for the largest possible value of r.

job i, exists and finishes before j,,,

|

Greedy: iy ip i, el o i

OPT: Ji J2 Jr “_ T “
t

solution still feasible and optimal
(but contradicts maximality of r)

15 /24

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
* Assume greedy is not optimal, and let's see what happens.
e Let i, i, ... iydenote set of jobs selected by greedy.
e Letj,, j,, ---j,, denote set of jobs in an optimal solution with
iy =ji, i=js, ..., i, =j, for the largest possible value of r.

job i, exists and finishes before j,,,

| i

|
|
. : . . . | .
Greedy: iy iy i [[i
i
|
|
|
|
|

why not replace job j.,;
with job i.?

Interval partitioning

Interval partitioning.
* Lecture; starts at 5; and finishes at f.
¢ Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 4 classrooms to schedule 10 lectures.

4 e J
3 C d g

2 b h

1 a f i

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

time

16

24

Interval partitioning Interval partitioning: greedy algorithms

Interval partitioning. Greedy template. Consider lectures in some natural order.
* Lecture; starts at s; and finishes at f;. Assign each lecture to an available classroom (which one?);
e Goal: find minimum number of classrooms to schedule all lectures allocate a new classroom if none are available.

so that no two lectures occur at the same time in the same room.

« [Earliest start time] Consider lectures in ascending order of s,

Ex. This schedule uses 3 classrooms to schedule 10 lectures.
« [Earliest finish time] Consider lectures in ascending order of f.

[Shortest interval] Consider lectures in ascending order of £, —s,.

» [Fewest conflicts] For each lecture j, count the number of

3
4 d f j
conflicting lectures ¢;. Schedule in ascending order of ¢;.
2 b g i
1 a e h
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time
16
17 /24
Interval partitioning: greedy algorithms Interval partitioning: earliest-starttime-first algorithm

Greedy template. Consider lectures in some natural order.

Assign each lecture to an available classroom (which one?);
. . EARLIEST-START-TIME-FIRST O Ay
allocate a new classroom if none are available. ST-S ST, 81,82 oy S0, fi fo oees)

SORT lectures by start time so that s1 < s2 < ... < sy

. - . d «— (0 <«— number of allocated classrooms
counterexample for earliest finish time

FOR j=1TO n

2 IF lecture j is compatible with some classroom

! Schedule lecture j in any such classroom £.
ELSE

counterexample for shortest interval

s Allocate a new classroom d + 1.

2 Schedule lecture j in classroom d + 1.

L d—d +1

" RETURN schedule.
counterexample for fewest conflicts

19

24

Earliest-starttime-first algorithm demo

Consider lectures in order of start time:

» Assign next lecture to any available classroom (if one exists).

* Otherwise, open up a new classroom.

done
3 c d f j
2 b g i
1 a e h
9 9:30 10 10:30 11 11:30 12 12:30 1 1:330 2 2:30 3 3:30 4 4:30 time

Interval partitioning: lower bound on optimal solution

Def. The depth of a set of open intervals is the maximum number that

contain any given time.

Key observation. Number of classrooms needed > depth.

Q. Does number of classrooms needed always equal depth?

A. Yes! Moreover, earliest-start-time-first algorithm finds one.

depth = 3

9 9:30 10 10:30 11 11:30 12

12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

23 /24

Interval partitioning: earliest-starttime-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in

O(n log n) time.

Pf. Store classrooms in a priority queue (key = finish time of its last lecture).
» To determine whether lecture j is compatible with some classroom,

compare s; to key of min classroom k in priority queue.

* To add lecture j to classroom %, increase key of classroom % to f.
» Total number of priority queue operations is O(n).

* Sorting by start time takes O(n log n) time.

Remark. This implementation chooses the classroom k£ whose finish time

of its last lecture is the earliest.

22

Interval partitioning: analysis of earliest-starttime-first algorithm

Observation. The earliest-start-time first algorithm never schedules two

incompatible lectures in the same classroom.

Theorem. Earliest-start-time-first algorithm is optimal.

Pf.

* Let d = number of classrooms that the algorithm allocates.

.

These d lectures each end after s;.
Since we sorted by start time, all these incompatibilities are caused by
lectures that start no later than s,.

Classroom d is opened because we needed to schedule a lecture, say j,
that is incompatible with all 4 -1 other classrooms.

Thus, we have d lectures overlapping at time s, + ¢.
Key observation = all schedules use = d classrooms. =

