
Introduction to Graphs

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

3

Undirected graphs

Notation. G = (V, E)

・V = nodes.

・E = edges between pairs of nodes.

・Captures pairwise relationship between objects.

・Graph size parameters: n = | V |, m = | E |.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8 }

m = 11, n = 8

2 / 36

4

One week of Enron emails

3 / 36

5

The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

4 / 36

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

6

Framingham heart study

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

The Spread of Obesity in a Large Social Network Over 32 Years

n engl j med 357;4 www.nejm.org july 26, 2007 373

educational level; the ego’s obesity status at the
previous time point (t); and most pertinent, the
alter’s obesity status at times t and t + 1.25 We
used generalized estimating equations to account
for multiple observations of the same ego across
examinations and across ego–alter pairs.26 We
assumed an independent working correlation
structure for the clusters.26,27

The use of a time-lagged dependent variable
(lagged to the previous examination) eliminated
serial correlation in the errors (evaluated with a
Lagrange multiplier test28) and also substantial-
ly controlled for the ego’s genetic endowment and
any intrinsic, stable predisposition to obesity. The
use of a lagged independent variable for an alter’s
weight status controlled for homophily.25 The
key variable of interest was an alter’s obesity at
time t + 1. A significant coefficient for this vari-
able would suggest either that an alter’s weight
affected an ego’s weight or that an ego and an
alter experienced contemporaneous events affect-

ing both their weights. We estimated these mod-
els in varied ego–alter pair types.

To evaluate the possibility that omitted vari-
ables or unobserved events might explain the as-
sociations, we examined how the type or direc-
tion of the social relationship between the ego
and the alter affected the association between the
ego’s obesity and the alter’s obesity. For example,
if unobserved factors drove the association be-
tween the ego’s obesity and the alter’s obesity,
then the directionality of friendship should not
have been relevant.

We evaluated the role of a possible spread in
smoking-cessation behavior as a contributor to
the spread of obesity by adding variables for the
smoking status of egos and alters at times t and
t + 1 to the foregoing models. We also analyzed
the role of geographic distance between egos
and alters by adding such a variable.

We calculated 95% confidence intervals by sim-
ulating the first difference in the alter’s contem-

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

5 / 36

Social Network as a Graph

Alice

Bob Charlie

Dawn Eve

Fred George

Nodes: people

Edges: friendship

6 / 36

Road Network as a Graph

Main St

1st Ave

2
n
d
A
ve

3rd
Av

e

M
ain

St El
m
St

Aspen Ave

5th Ave
Pa
rk
St

M
ain

St

5th Ave

Nodes: intersections

Edges: roads

7 / 36

Electronic Circuits as a Graph

B

20Ω

10Ω

vx
S
5 vx5Ω

A

Vertices: junctions

Edges: components

8 / 36

Course Dependencies as a Graph

CS1043

CS2003 CS2033

CS2123

CS3053

CS4333

Nodes: courses

Edges: prerequisites

10 / 36

Maze as a Graph

Nodes: rooms; edges: doorways

11 / 36

Flavors of Graphs

The first step in any graph problem is recognizing that you have a
graph problem

It’s not always obvious!

The second step in any graph problem is determining which flavor of
graph you are dealing with

Learning to talk the talk is an important part of walking the walk

The flavor of graph has a big impact on which algorithms are
appropriate and efficient

12 / 36

Directed vs. Undirected Graphs

A

B C

D E

F G

Undirected A

B C

D E

F G

Directed

A graph G = (V ,E) is undirected if edge (x , y) ∈ E implies that
(y , x) is also in E

Road networks between cities are typically undirected

Street networks within cities are almost always directed because of
one-way streets

What about online social networks?

13 / 36

Exercise 1: Spot the graph

Nodes:

Chess piece at board position

Edges:

Valid move

14 / 36

Exercise 2: Spot the graph

Pay From Pay To Amount Date

12354 67324 $1000 Sep 1
12398 67324 $500 Sep 4
67324 45721 $750 Sep 7
78923 12398 $500 Sep 8

Nodes:

Bank Account #

Edges:

Payment Amount

15 / 36

Exercise 3: Spot the graph

x = [’ham’,’spam’,’glam’,’tram’]

for a in x:

print a

if a ==’ham’:

print ’awesome’

else: print ’terrible’

print ’moving on’

Nodes:

code blocks

Edges:

control flow

16 / 36

Exercise 4: Spot the graph

def foo(arg1):

x = arg1+2

bar(x)

def bar(arg1,arg2):

y = arg1+arg2

ham(y)

def ham(arg1):

bar(2*arg1)

Nodes:

functions

Edges:

function call

17 / 36

7

Some graph applications

graph node edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond

18 / 36

39

Some directed graph applications

directed graph node directed edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

19 / 36

Weighted vs. Unweighted Graphs

A

B C

D E

F G

Unweighted A

B C

D E

F G

10

4

1

7 5 8

19

4

10

6

8

Weighted

In weighted graphs, each edge (or vertex) of G is assigned a
numerical value, or weight

The edges of a road network graph might be weighted with their
length, drive-time or speed limit

In unweighted graphs, there is no cost distinction between various
edges and vertices

20 / 36

Cyclic vs. Acyclic Graphs

A

B C

D

F G

Cyclic A

B C

D

F G

Acyclic

An acyclic graph does not contain any cycles

Trees are connected, acyclic, undirected graphs

Directed acyclic graphs are called DAGs

DAGs arise naturally in scheduling problems, where a directed edge
(x , y) indicates that x must occur before y .

21 / 36

Labeled vs. Unlabeled Graphs

A

B C

D E

F G

Labeled Unlabeled

In labeled graphs, each vertex is assigned a unique name or identifier
to distinguish it from all other vertices.

An important graph problem is isomorphism testing: determining
whether the topological structure of two graphs are in fact identical if
we ignore any labels.

22 / 36

More Graph Terminology

A path is a sequence of edges connecting two vertices

Two common problems: (1) does a path exist between A and B? (2)
what is the shortest path between A and B?

A graph is connected if there is a path between any two vertices

A directed graph is strongly connected if there is a directed path
between any two vertices.

The degree of a vertex is the number of edges adjacent to it

23 / 36

8

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.

・Two representations of each edge.

・Space proportional to n2.

・Checking if (u, v) is an edge takes Θ(1) time.

・Identifying all edges takes Θ(n2) time.

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

24 / 36

9

Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.

・Two representations of each edge.

・Space is Θ(m + n).

・Checking if (u, v) is an edge takes O(degree(u)) time.

・Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

25 / 36

Graph Data Structures

a

b

d

c

e

f

h

g

Option 1: Adjacency Sets

a , b , c , d , e , f , g , h = range (8)
N = [

{b , c , d , e , f } , # a
{c , e } , # b
{d} , # c
{e } , # d
{ f } , # e
{c , g , h} , # f
{ f , h} , # g
{ f , g} # h

]

>>> b i n N[a]
Neighborhood membership

True
>>> l e n (N[f]) # Degree
3

26 / 36

Graph Data Structures

a

b

d

c

e

f

h

g

Option 2: Adjacency Lists

a , b , c , d , e , f , g , h = range (8)
N = [

[b , c , d , e , f] , # a
[c , e] , # b
[d] , # c
[e] , # d
[f] , # e
[c , g , h] , # f
[f , h] , # g
[f , g] # h

]

>>> b i n N[a]
Neighborhood membership

True
>>> l e n (N[f]) # Degree
3

26 / 36

Graph Data Structures

a

b

d

c

e

f

h

g

2 1

3 9

4

4

38

7

5

2

2

2

1

6

9

8

Option 3: Adjacency Dictionaries
w/ Edge Weights

a , b , c , d , e , f , g , h = range (8)
N = [

{b : 2 , c : 1 , d : 3 , e : 9 , f : 4} ,#a
{c : 4 , e : 3} , #b
{d : 8} , #c
{e : 7} , #d
{ f : 5} , #e
{c : 2 , g : 2 , h : 2} , #f
{ f : 1 , h : 6} , #g
{ f : 9 , g : 8} #h

]

>>> b i n N[a]
Neighborhood membership

True
>>> l e n (N[f]) # Degree
3
>>> N[a] [b]

Edge we ight f o r (a , b)
2

26 / 36

Graph Data Structures

a

b

d

c

e

f

h

g

Option 4: Dictionaries
w/ Adjacency Sets

N = {
’ a ’ : s e t (’ bcde f ’) ,
’ b ’ : s e t (’ ce ’) ,
’ c ’ : s e t (’ d ’) ,
’ d ’ : s e t (’ e ’) ,
’ e ’ : s e t (’ f ’) ,
’ f ’ : s e t (’ cgh ’) ,
’ g ’ : s e t (’ f h ’) ,
’ h ’ : s e t (’ f g ’)

}

>>> ’ b ’ i n N[’ a ’]
Neighborhood membership

True
>>> l e n (N[’ f ’]) # Degree
3

26 / 36

Graph Data Structures

a

b

d

c

e

f

h

g

Option 5: Adjacency Matrix
(using nested lists)

a , b , c , d , e , f , g , h = range (8)

a b c d e f g h

N = [[0 , 1 , 1 , 1 , 1 , 1 , 0 , 0] , # a
[0 , 0 , 1 , 0 , 1 , 0 , 0 , 0] , # b
[0 , 0 , 0 , 1 , 0 , 0 , 0 , 0] , # c
[0 , 0 , 0 , 0 , 1 , 0 , 0 , 0] , # d
[0 , 0 , 0 , 0 , 0 , 1 , 0 , 0] , # e
[0 , 0 , 1 , 0 , 0 , 0 , 1 , 1] , # f
[0 , 0 , 0 , 0 , 0 , 1 , 0 , 1] , # g
[0 , 0 , 0 , 0 , 0 , 1 , 1 , 0]] # h

>>> a , b , c , d , e , f , g , h = range (8)
>>> N[a] [b]

Neighborhood membership
1
>>> sum (N[f]) # Degree
3

26 / 36

Graph Data Structures

a

b

d

c

e

f

h

g

2 1

3 9

4

4

38

7

5

2

2

2

1

6
9

8

Option 6: Weighted Adjacency
Matrix
(using nested lists)

a , b , c , d , e , f , g , h = range (8)
= f l o a t (’ i n f ’)

a b c d e f g h

W = [[0 , 2 , 1 , 3 , 9 , 4 , ,] , # a
[, 0 , 4 , , 3 , , ,] , # b
[, , 0 , 8 , , , ,] , # c
[, , , 0 , 7 , , ,] , # d
[, , , , 0 , 5 , ,] , # e
[, , 2 , , , 0 , 2 , 2] , # f
[, , , , , 1 , 0 , 6] , # g
[, , , , , 9 , 8 , 0]] # h

>>> i n f = f l o a t (’ i n f ’)
>>> W[a] [b] < i n f

Neighborhood membership
True
>>> W[c] [e] < i n f

Neighborhood membership
Fa l s e
>>> sum (1 f o r w i n W[a] i f w < i n f) − 1

Degree
5

26 / 36

Trade-offs Between Adjacency Lists and Adjacency
Matrices

When the text refers to adjacency lists, it means adjacency linked lists

Adjacency linked lists use less memory for sparse graphs than matrices

Finding vertex degree is Θ(1) vs. Θ(n) in matrices

In Python, adjacency lists are technically adjacency dynamic arrays
(respectively sets and dictionaries for other representations)

Python adjacency lists/sets/dictionaries use less memory than
adjacency matrices implemented in Python

They are also Θ(1) to find vertex degree

Within Python, adjacency sets offer expected Θ(1) membership
checking vs. Θ(n) for lists

For graph traversal, adjacency lists execute faster than sets.

27 / 36

45

Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G = (V, E) is an ordering of its

nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

28 / 36

Application of topological sorting

Figure: Directed acyclic graph for clothing dependencies

Figure: Topological sort of clothes

29 / 36

46

Precedence constraints

Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

Applications.

・Course prerequisite graph: course vi must be taken before vj.

・Compilation: module vi must be compiled before vj. Pipeline of

computing jobs: output of job vi needed to determine input of job vj.

30 / 36

47

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]

・Suppose that G has a topological order v1, v2, …, vn and that G also has a

directed cycle C. Let's see what happens.

・Let vi be the lowest-indexed node in C, and let vj be the node just

before vi; thus (vj, vi) is an edge.

・By our choice of i, we have i < j.

・On the other hand, since (vj, vi) is an edge and v1, v2, …, vn is a topological

order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

31 / 36

48

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

32 / 36

49

Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

・Suppose that G is a DAG and every node has at least one entering edge.

Let's see what happens.

・Pick any node v, and begin following edges backward from v. Since v
has at least one entering edge (u, v) we can walk backward to u.

・Then, since u has at least one entering edge (x, u), we can walk

backward to x.

・Repeat until we visit a node, say w, twice.

・Let C denote the sequence of nodes encountered between successive

visits to w. C is a cycle. ▪

w x u v

33 / 36

50

Directed acyclic graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. [by induction on n]

・Base case: true if n = 1.

・Given DAG on n > 1 nodes, find a node v with no entering edges.

・G – { v } is a DAG, since deleting v cannot create cycles.

・By inductive hypothesis, G – { v } has a topological ordering.

・Place v first in topological ordering; then append nodes of G – { v }

・in topological order. This is valid since v has no entering edges. ▪

DAG

v

34 / 36

Examples of Induction-Based Topological Sorting

35 / 36

Python code for induction-based topsort

def t o p s o r t (G) :
count = d i c t ((u , 0) f o r u i n G)#The in−deg r ee f o r each node
f o r u i n G :

f o r v i n G [u] :
count [v] += 1 #Count e v e r y in−edge

Q = [u f o r u i n G i f count [u] == 0] # Va l i d i n i t i a l nodes
S = [] #The r e s u l t
whi le Q: #While we have s t a r t nodes . . .

u = Q. pop () #Pick one
S . append (u) #Use i t as f i r s t o f the r e s t
f o r v i n G [u] :

count [v] −= 1 #”Uncount” i t s out−edges
i f count [v] == 0 :#New v a l i d s t a r t nodes ?

Q. append (v) #Deal w i th them next
return S

36 / 36

