Introduction to Graphs

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

One week of Enron emails

KEY:
EMPLOYEE (E-MAIL ADDRESS)

AT LEAST ONE E-MAIL CONTAC
BETWEEN EMPLOYEES.

P —
PrRp—
arongren
dissolaey o
st paringrs
amatng .
sotosnm g . The analysis detected
P, an anomaly: a new e-
mail address for this
auch quey g Iy soameye @ person, who had been
adtng otang ® “phillp.allen” for 131
P o schwoger @ previous weeks.
errol mclau ko &
v e 100 quenct @
1.camptol @ ohn amald @ o
oo somers @ fntamey® imes sotos
oeradnemcc @ on e @ [Icatien]
gy @ Frammiay®
juan nemandez @
hoen satiry @ el
ames ok @ iy ® ke sty
Imscnwilems @' Keverusc @
juscnwote @ wrymey®
Low®
treyhosse @ Lrims® 8-
Joftrey shankman @ ‘martn cuita® ° ® robert benson
e ot .
jeft.skilling ® ot @ T4 ey
 armer @ R A B Y g
e peerhesvey
o e [
Company leaders e-mail ™9 o v
less frequently, leaving o e @
icati e ® .
some communication to g ® o o O
subordinates. phahodge ™ @ L) .
i
...m...TT o TY.MM
nyatt oy
= [P
Finding Patterns kenneth.lay

In Corporate Chatter

3/36

Undirected graphs

Notation. G=(V,E)
* V=nodes.
* E=edges between pairs of nodes.
» Captures pairwise relationship between objects.
* Graph size parameters: n=I1VI,m=IEI

(@
. Vv={1,2,3,4,5,6,7,8}
(2—(3)

" E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8 }
O—E © weia=s

3
2/36
o Wiliamson & Asscizes Sonsoldted Comparies
VementPs5 COTel Assoizion . Fich Afrdaie T PricdtyOne FowBandeidh
[P Great Piins Comm. Dich Miate Touoon_p . Rudde
° MegaCLEC
Home Telephone Integra Telecom # Kaology .
\w A Samover r Gibalcom
i P S i Tl R =
Rural s Sevice = ® US TakPachc
o uson Jrnasc #
Lincolnle etk il 7 - S Newtepe
O Teegbone . il
. e 6P rpse M e
. b
ACorsact Commuricatons Newvapsc & ShenTel Teeghone Ces.
* . Viwal Gecsalite . « 7 penbecke
3 Loscom Tolesine,_ 5 1%
ot Springs Telephone | { ¥ |
fosa- Al W), A i = o
. e Point
wvercom g >
Tge FIRLY
.
emc 4
. Teesst
Catssn \ATSTC g
Comark (T B S Jomars
s \ SV Widsiue
E A S
e €11 1NG Frpa
Jomatr Publc Senvie Teephone
o Cranes Communicasons * TomesTe ricators
oo ienots Yo Commuricions Coparain
Glers Togore [||pee) & 0l Vee Sons & Seuh Sepe
i Tesrane /] 1% Lo 2 N
Vereon /) Geensial ® Business Telesom X |Core Commuricatins Jateof v
I . WestWireless 3 ® ¢ Smeciada
. I T S\ 0IC Telecom
Adanced Pagng) . 24 TelneWorcuide 2557 Communications Adviscry Cosel
Nep Visess i Callag bty VS T <.
. ATAT Wisless ™8 SurCom Vireless o T e
& SRS s X ; [S e ciRuml CHRS C: I
T M J ?‘J;Dm Bl of R ariers o NECA 8 CoscadeUts
Teksar Communicatiers LIRS VE Calorado Calar s @ @ Mlala Communscatons %, Bemves Creek Telephane
A Jvenure WS\ ebiPCs . ERTA icasons _ Trans Cascades Tel
Audiocom . Al Amesicen Telephone. Smith v BofraPCS. Froker Mendar SN Telecorhrinicatons. Tran Cas lephone
ks D Bagey . o
Felinians . Jlobs Corerence Paers Exetrecks Calir 2 L) CPASTCO . Morwck Tephons Oresendabo Usies
‘ 2 g Faioit A A .
. L & . J e ko Teapbone
Boraga Teephone 8 caions JovaTd o o .t
¢ B Do Nk ‘Ble Casa Conms . e
Py Telscape Communicaions & ootes . OmTd S e pon Telephone
. . . . v
“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010 5
4/36

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, 230) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange

denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

Road Network as a Graph

Nodes: intersections
Edges: roads

1st Ave

2nd Ave

Aspen Ave

Sty 4,
(S

5th Ave

/36

/36

Social Network as a Graph

Alice

Bob

Nodes: people

Eve

Dawn

/1N

Fred

Electronic Circuits as a Graph

10Q

@ Vertices: junctions

o Edges: components

<D

Edges: friendship

Charlie

altn

George

Vx

/36

/36

Course Dependencies as a Graph Maze as a Graph

)

CS51043
{ \
CS52003 CS2033

4

)

52123 Nodes: courses

|

1 Edges: prerequisites |
|
C53053

|

4

)

CS4333 Nodes: rooms; edges: doorways

—
10/36 11/36

Flavors of Graphs Directed vs. Undirected Graphs

A Undirected A Directed

T\

B —— C

D/\/

E

™~ N\

@ The first step in any graph problem is recognizing that you have a ¢
G F— G

graph problem

@ It's not always obvious!

/1N/

—¢&
@ The second step in any graph problem is determining which flavor of / \
graph you are dealing with

B
F

@ Learning to talk the talk is an important part of walking the walk
@ The flavor of graph has a big impact on which algorithms are o Agraph G = (V,E) is undirected if edge (x, y) € E implies that
appropriate and efficient (v, x) is also in E
@ Road networks between cities are typically undirected

@ Street networks within cities are almost always directed because of
one-way streets

@ What about online social networks?

12 /36 13 /36

Exercise 1: Spot the graph Exercise 2: Spot the graph

Q
(o
@]
-
(0]
.
((e]

b
jio-
)

Pay From Pay To Amount Date

12354 67324 $1000 Sep 1
12398 67324 $500 Sep 4
67324 45721 $750 Sep 7
78923 12398 $500 Sep 8

by

|w

i
N
N

n
- Lk

D I
=~ O
H N W, OO 9 X

m m o Nodes:
‘;‘ P o Edges:
a b ¢c d e f g h
o Nodes:
o Edges:
14 /36 15/36
Exercise 3: Spot the graph Exercise 4: Spot the graph

def foo(argl):
X = argl+2

x = [’ham’,’spam’,’glam’,’tram’]
bar (x)

for a in x:
print a
if a ==’ham’:
print ’awesome’
else: print ’terrible’
print ’moving on’

def bar(argl,arg2):
y = argl+arg?2
ham (y)

def ham(argl):

@ Nodes: bar (2*argl)

° Edges: @ Nodes:

o Edges:

16 /36 17/36

Some graph applications

I T T

communication
circuit
mechanical
financial
transportation
internet
game

social relationship

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position

person, actor

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move

friendship, movie cast

neural network neuron synapse
protein network protein protein-protein interaction
molecule atom bond
18/36
Weighted vs. Unweighted Graphs
A Unweighted A Weighted
\ x
o \ 0 \9
@ In weighted graphs, each edge (or vertex) of G is assigned a
numerical value, or weight
@ The edges of a road network graph might be weighted with their
length, drive-time or speed limit
@ In unweighted graphs, there is no cost distinction between various
edges and vertices
20 /36

Some directed graph applications

directed graph directed edge

transportation street intersection one-way street
web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

19/36

Cyclic vs. Acyclic Graphs

A Cyclic A Acyclic

B «— C B — C

F—— G

@ An acyclic graph does not contain any cycles

@ Trees are connected, acyclic, undirected graphs

@ Directed acyclic graphs are called DAGs

@ DAGs arise naturally in scheduling problems, where a directed edge
(x,y) indicates that x must occur before y.

21/36

Labeled vs. Unlabeled Graphs

A Labeled

\B_
e \E/
e e

Unlabeled
[e
N
S~ N\

C

D

o In labeled graphs, each vertex is assigned a unique name or identifier
to distinguish it from all other vertices.

@ An important graph problem is isomorphism testing: determining
whether the topological structure of two graphs are in fact identical if
we ignore any labels.

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with A, =1 if (u,v) is an edge.
» Two representations of each edge.
* Space proportional to n2.
* Checking if (u,v) is an edge takes ©(1) time.
* Ildentifying all edges takes ©(n?) time.

12345678

0 0 1/01100000
‘ 2(10111000

a e 3/11001011
401001000

" 5101110100
G e ° 600001000
7/00100001

800100010

24 /36

More Graph Terminology

A path is a sequence of edges connecting two vertices

Two common problems: (1) does a path exist between A and B? (2)
what is the shortest path between A and B?

A graph is connected if there is a path between any two vertices

A directed graph is strongly connected if there is a directed path
between any two vertices.

The degree of a vertex is the number of edges adjacent to it

23 /36

Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.
- Two representations of each edge. degree = number of neighbors of u
* Space is O(m + n). /
* Checking if (u,v) is an edge takes O(degree(u)) time.
* Identifying all edges takes @(m + n) time.

[~]
]

[N}
N

B

s

w

i
;

vl N w

OO,
N
(2 0—(3)
6‘! ®
() g

N
E

i
:
;

)}

~N
HHH
[~ [=]

25/36

Graph Data Structures

Option 1: Adjacency Sets

N = [
{b, ¢, d, e, f}
{c, e},
{d},

]

>>> b in N[a]

d — e h # Neighborhood membership
True

>>> len(N[f]) # Degree
3

Graph Data Structures

FhoFh W KR IR HRH
>R w0 Q0 TV

b, ¢, d, e, f, g, h = range(8)

26 /36

Option 3: Adjacency Dictionaries

w/ Edge Weights

a, b, ¢, d, e, f, g, h = range(8)
N=[
{b:2, c:1, d:3, e:9
{c:4, e:3}
{d:8},
4 {e:7},
b — ¢ g {f:5},
s {c:2, g:2, h:2}
G/ \Q N {f:1, h:6},
4 {f:9, g:8}
a o\ f‘ ® o]
)
\”{’ “’/ \ >>> b in N[a]
7 # Neighborhood membership
d — e h True

>>> len(N[f]) # Degree
3

>>> N[a][b]
Edge weight for (a, b)
2

, f:4} #a

#b
#c
#d
#e
#f
#E
#h

26 /36

Graph Data Structures

Option 2: Adjacency Lists

a,
N =
c, d, e, f],
e],

[
[b,
[
g [e].
[f],
[c. g, h],
[f, h],
[f, g]

]

>>> b in N[a]

d — e h # Neighborhood membership
True

>>> len(N[f]) # Degree
3

Graph Data Structures

Option 4: Dictionaries
w/ Adjacency Sets
N ={
"a': set(’'bcdef’),
b': set('ce’),
c': set('d"),
g 'd': set('e’),
'e': set('f'),
f
g
h

b — C
": set('cgh’),
": set('fh’"),

/ \fﬁ
IS AVANV I

d h # Neighborhood membership
True

a

>>> len(N['f']) # Degree

3

b, ¢, d, e, f, g, h = range(8)

FhoF W KR FRW R H
>R w0 Q0 TV

Graph Data Structures

Option 5: Adjacency Matrix
(using nested lists)

a, b, ¢, d, e, f, g, h = range(8)
abcdefgh
N=1[[01,1,1,1,1,0,0], #a
b c g [0,0,1,0,1,0,0,0], # b
[0,0,0,1,0,0,0,0], # ¢
[0,0,0,0,1,0,0,0], #d
[0,0,0,0,0,1,0,0], # e
2 £ [0,0,1,0,0,0,1,1], # f
[0,0,0,0,0,1,0,1], # g
\ / ’x [0,0,0,0,0,1,1,0]] # h
d — e h >>> a, b, ¢, d, e, f, g, h = range(8)

>>> N[a][b]
Neighborhood membership
1
>>> sum(N[f]) # Degree
3

26 /36

Trade-offs Between Adjacency Lists and Adjacency
Matrices

When the text refers to adjacency lists, it means adjacency linked lists

Adjacency linked lists use less memory for sparse graphs than matrices
Finding vertex degree is ©(1) vs. ©(n) in matrices

In Python, adjacency lists are technically adjacency dynamic arrays
(respectively sets and dictionaries for other representations)

@ Python adjacency lists/sets/dictionaries use less memory than
adjacency matrices implemented in Python

@ They are also ©(1) to find vertex degree

e Within Python, adjacency sets offer expected ©(1) membership
checking vs. ©(n) for lists

@ For graph traversal, adjacency lists execute faster than sets.

Graph Data Structures

ATV
DAL/ NN

Directed acyclic graphs

Option 6: Weighted Adjacency

Matrix .
(using nested lists)

a, b,

c, d, e, f, g, h = range(8)
_ = float('inf")

, R S]
,.,0,8, ., ,_]
I 0,7,,_._]
I 0.5,.,-1,
2., 0,2,2],
L, 1,0,6],
o, 9,8,0]]

>>> inf = float('inf")
>>> W[a][b] < inf
Neighborhood membership

True

>>> W[c][e] < inf
Neighborhood membership

False

>>> sum(1 for w in W[a]
Degree

5

FhoF I I
SR w0 Q0 T v

if w <00Hf) — 1

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G =(V,E) is an ordering of its
nodes as v, v,, ..., v, so that for every edge (v, v) we have i <j.

/\/\ .

Vs

@

\/\/ NS

a DAG

a topological ordering

45

28 /36

Application of topological sorting

Figure: Directed acyclic graph for clothing dependencies

Figure: Topological sort of clothes

29/36
Directed acyclic graphs
Lemma. If G has a topological order, then G is a DAG.
Pf. [by contradiction]
» Suppose that G has a topological order v, v,, ..., v, and that G also has a
directed cycle C. Let's see what happens.
* Let v, be the lowest-indexed node in C, and let v; be the node just
before v; thus (v;,v) is an edge.
* By our choice of i, we have i <j.
* On the other hand, since (v;,v) is an edge and v, v,, ..., v, is a topological
order, we must have j<i, a contradiction. =
the directed cycle C
the supposed topological order: vy, ..., v,
47
31/36

Precedence constraints

Precedence constraints. Edge (v;, v) means task v; must occur before v;.

Applications.
+ Course prerequisite graph: course v; must be taken before v,
+ Compilation: module v; must be compiled before v, Pipeline of
computing jobs: output of job v; needed to determine input of job v;.

46

30/36

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

48

32/36

Directed acyclic graphs Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges. Lemma. If G is a DAG, then G has a topological ordering.
Pf. [by contradiction] Pf. [by induction on n] ﬂil
* Suppose that G is a DAG and every node has at least one entering edge. * Base case: true if n=1.
Let's see what happens. * Given DAG on n >1 nodes, find a node v with no entering edges.
* Pick any node v, and begin following edges backward from v. Since v * G-{v}isaDAG, since deleting v cannot create cycles.
has at least one entering edge (u,v) we can walk backward to u. * By inductive hypothesis, G- { v} has a topological ordering.
* Then, since u has at least one entering edge (x, u), we can walk * Place v first in topological ordering; then append nodes of G- {v}
backward to x. * in topological order. This is valid since v has no entering edges. =

Repeat until we visit a node, say w, twice.
Let C denote the sequence of nodes encountered between successive
visits to w. Cis a cycle. = To compute a topological ordering of G: DAG
Find a node v with no incoming edges and order it first %
/

C C C C O Delete v from G
Recursively compute a topological ordering of G—{v}
and append this order after v

49

33/36 34 /36

Examples of Induction-Based Topological Sorting Python code for induction-based topsort

def topsort(G):
count = dict((u, 0) for u in G)#The in—degree for eacl
for u in G:
for v in G[u]:

count[v] +=1 #Count every in—edge
Q = [u for u in G if count[u] = 0] # Valid initial n
S =[] #The result
while Q: #While we have start nodes...
u = Q.pop() #Pick one
S.append(u) #Use it as first of the rest
for v in G[u]:
count[v] —=1 #"Uncount” its out—edges
if count[v] = 0:#New valid start nodes?

Q.append(v) #Deal with them next
return S

35/36 36 /36

