Divide-Conquer-Glue Algorithms Mergesort and Counting Inversions

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/-wayne/kleinberg-tardos. Some code reused or adapted from Python Algorithms by Magnus Lie Hetland.

Algorithm Design Jon Kleinberg - Éva tardos

SECTION 5.1

5. DIVIDE AND CONQUER

mergesort

- counting inversion
- closest pair of points
- randomized quicksort
- median and selection

Divide-and-conquer paradigm

Divide-and-conquer.

- · Divide up problem into several subproblems.
- · Solve each subproblem recursively.
- Combine solutions to subproblems into overall solution.

Most common usage.

- Divide problem of size n into two subproblems of size n/2 in linear time.
- Solve two subproblems recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

• Brute force: $\Theta(n^2)$.

• Divide-and-conquer: $\Theta(n \log n)$.

attributed to Julius Caesar

Sorting problem

Problem. Given a list of n elements from a totally-ordered universe, rearrange them in ascending order.

3/22 4/2:

Sorting applications

Obvious applications.

- · Organize an MP3 library.
- · Display Google PageRank results.
- List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.

- · Identify statistical outliers.
- · Binary search in a database.
- · Remove duplicates in a mailing list.

Non-obvious applications.

- Convex hull.
- · Closest pair of points.
- · Interval scheduling / interval partitioning.
- · Minimum spanning trees (Kruskal's algorithm).
- Scheduling to minimize maximum lateness or average completion time.

• ...

5 / 22

Mergesort

- · Recursively sort left half.
- · Recursively sort right half.
- · Merge two halves to make sorted whole.

6 / 22

Merging

Goal. Combine two sorted lists *A* and *B* into a sorted whole *C*.

- Scan A and B from left to right.
- Compare a_i and b_i .
- If $a_i \le b_i$, append a_i to C (no larger than any remaining element in B).
- If $a_i > b_i$, append b_i to C (smaller than every remaining element in A).

Canonical Divide-Conquer-Glue Algorithm

```
def divide_and_conquer(S, divide, glue):
    if len(S) == 1: return S
    L, R = divide(S)
    A = divide_and_conquer(L, divide, glue)
    B = divide_and_conquer(R, divide, glue)
    return glue(A, B)
```

7/22 8/22

Mergesort in Python

```
1 def mergesort(seq):
      mid = len(seq)/2
                                            #Midpoint for division
      lft , rgt = seq[:mid], seq[mid:]
      if len(lft) > 1: lft = mergesort(lft) #Sort by halves
      if len(rgt) > 1: rgt = mergesort(rgt)
                                             #Merge sorted halves
      while Ift and rgt:
                                             #Neither half is empty
          if |ft[-1]\rangle = rgt[-1]:
                                             #Ift has greatest last value
               res.append(lft.pop())
                                             #Append it
9
                                             #rgt has greatest last value
10
11
               res.append(rgt.pop())
                                             #Append it
      res.reverse()
                                             #Result is backward
12
      return (lft or rgt) + res
                                             #Also add the remainder
13
```

How can we measure the time complexity of recursive algorithms?

- Measuring the time complexity of iterative algorithms is usually straightforward: count the inputs, check for loops, etc.
- We know that certain operations can take linear time, constant time, logarithmic time, etc.
- Running those operation in a loop n times produces a multiplicative factor
- But how can we do this for recursive algorithms? With recurrence relations

10 / 22

Recurrence Relations

- Recurrence relations specify the cost of executing recursive functions.
- Consider mergesort
 - Linear-time cost to divide the lists
 - 2 Two recursive calls are made, each given half the original input
 - 3 Linear-time cost to merge the resulting lists together
- Recurrence: $T(n) = 2T(\frac{n}{2}) + \Theta(n)$
- Great, but how does this help us estimate the running time?

A useful recurrence relation

Def. $T(n) = \max$ number of compares to mergesort a list of size $\le n$. Note. T(n) is monotone nondecreasing.

Mergesort recurrence.

$$T(n) \le \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + n & \text{otherwise} \end{cases}$$

Solution. T(n) is $O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

9 / 22

Divide-and-conquer recurrence: proof by recursion tree

Proposition. If T(n) satisfies the following recurrence, then $T(n) = n \log_2 n$.

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2 T (n/2) + n & \text{otherwise} \end{cases}$$

is a power of 2

Pf 1.

Proof by induction

Proposition. If T(n) satisfies the following recurrence, then $T(n) = n \log_2 n$.

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2 T(n/2) + n & \text{otherwise} \end{cases}$$

is a power of 2

Pf 2. [by induction on *n*]

Counting inversions

• You rank *n* songs.

• My rank: 1, 2, ..., n. • Your rank: $a_1, a_2, ..., a_n$.

• Base case: when n = 1, T(1) = 0.

• Inductive hypothesis: assume $T(n) = n \log_2 n$.

• Goal: show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

$$= 2n \log_2 n + 2n$$

$$= 2n (\log_2 (2n) - 1) + 2n$$

$$= 2n \log_2 (2n). \quad \blacksquare$$

14 / 22

5. DIVIDE AND CONQUER

SECTION 5.3

- counting inversions

	А	В	С	D	E
me	1	2	3	4	5
you	1	3	4	2	5

Music site tries to match your song preferences with others.

Similarity metric: number of inversions between two rankings.

• Songs i and j are inverted if i < j, but $a_i > a_j$.

• Music site consults database to find people with similar tastes.

2 inversions: 3-2, 4-2

Brute force: check all $\Theta(n^2)$ pairs.

13

Counting inversions: applications

- · Voting theory.
- · Collaborative filtering.
- · Measuring the "sortedness" of an array.
- · Sensitivity analysis of Google's ranking function.
- · Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's tau distance).

Counting inversions: divide-and-conquer

- Divide: separate list into two halves A and B.
- · Conquer: recursively count inversions in each list.
- Combine: count inversions (a, b) with $a \in A$ and $b \in B$.
- · Return sum of three counts.

18 / 22

Counting inversions: how to combine two subproblems?

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

Warmup algorithm.

- Sort A and B.
- For each element $b \in B$,
- binary search in A to find how elements in A are greater than b.

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with $a \in A$ and $b \in B$, assuming A and B are sorted.

- Scan A and B from left to right.
- Compare a_i and b_i .
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_i is inverted with every element left in A.
- Append smaller element to sorted list C.

17

19 / 22 20 / 22

Counting inversions: divide-and-conquer algorithm implementation

Input. List L.

Output. Number of inversions in *L* and sorted list of elements *L*'.

SORT-AND-COUNT (L)

IF list L has one element RETURN (0, L).

DIVIDE the list into two halves A and B.

 $(r_A, A) \leftarrow \text{SORT-AND-COUNT}(A)$.

 $(r_B, B) \leftarrow \text{SORT-AND-COUNT}(B)$.

 $(r_{AB}, L') \leftarrow \text{MERGE-AND-COUNT}(A, B).$

RETURN $(r_A + r_B + r_{AB}, L')$.

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions in a permutation of size n in $O(n \log n)$ time.

Pf. The worst-case running time T(n) satisfies the recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n) & \text{otherwise} \end{cases}$$

21 / 22