Divide-Conquer-Glue Algorithms

Mergesort and Counting Inversions

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see
http://www.cs.princeton.edu/~wayne/kleinberg-tardos. Some code reused or adapted from Python Algorithms by

Magnus Lie Hetland.

5. DivIDE AND CONQUER

» mergesort

Algorithm Design

JON KLEINBERG - EVA TARDOS

SECTION 5.1

Divide-and-conquer

paradigm

Divide-and-conquer.

« Divide up problem into several subproblems.
* Solve each subproblem recursively.
» Combine solutions to subproblems into overall solution.

Most common usage.

* Divide problem of size n into two subproblems of size n/2 in linear time.

« Solve two subproblems recursively.

* Combine two solutions into overall solution in linear time.

Consequence.

* Brute force: O(n?).
* Divide-and-conquer: O(n log n).

Sorting problem

attributed to Julius Caesar

Problem. Given a list of n elements from a totally-ordered universe,

rearrange them in ascending order.

W

l
1 & SN

Born In The US.A.

Bruce Springsteen

Name
 Letite:

e Very Best Of slondle
e Very Best Of Blondie

st Hits
"

51 8o To fun
430 Born To Run

N

N
N

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Sorting applications

Obvious applications.
» Organize an MP3 library.
« Display Google PageRank results.
» List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
« Identify statistical outliers.
« Binary search in a database.
* Remove duplicates in a mailing list.

Non-obvious applications.
» Convex hull.
e Closest pair of points.
* Interval scheduling / interval partitioning.
* Minimum spanning trees (Kruskal's algorithm).
* Scheduling to minimize maximum lateness or average completion time.

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
e Compare g; and b;.
* If a; < b, append a; to C (no larger than any remaining element in B).
* If ai > b;, append b, to C (smaller than every remaining element in A).

sorted list A sorted list B

ai 18 B 17 23

merge to form sorted list C

2 3 7 10 11

~
N
N

Mergesort

« Recursively sort left half.
* Recursively sort right half.
* Merge two halves to make sorted whole.

input

sort left half

A G L (0] R H

sort right half

A G L 0} R H | M

merge results

A G H | L M (0] R S

Canonical Divide-Conquer-Glue Algorithm

def divide_and_conquer (S, divide ,

if len(S) = 1: return S
L, R = divide(S)
A = divide_and_conquer (L,
B = divide_and_conquer (R,
return glue(A, B)

First Draft

ofa
s Report on the
EDVAC
John von Neumann
M S
S T
T
glue):
divide , glue)
divide , glue)

N
N

N

N

Mergesort in Python How can we measure the time complexity of recursive

algorithms?
1 def mergesort(seq):
2 mid = len(seq)/2 #Midpoint for division
3 Ift , rgt = seq[:mid], seq[mid:] @ Measuring the time complexity of iterative algorithms is usually
4 if len(Ift) > 1: Ift = mergesort(Ift)#Sort by halves straightforward: count the inputs, check for loops, etc.
5 if len(rgt) > 1: rgt = mergesort(rgt)
6 res = [] #Merge sorted halves @ We know that certain operations can take linear time, constant time,
7 while Ift and rgt: #Neither half is empty . P
8 if Ift[—1] >= rgt[—1]: #I1ft has greatest last value Iogarlthmlc time, etc.
o res.append(Ift.pop()) #Append it @ Running those operation in a loop n times produces a multiplicative
10 else: #rgt has greatest last value f
11 res.append(rgt.pop()) #Append it actor
2 res.reverse () #Result is backward @ But how can we do this for recursive algorithms? With recurrence
13 return (Ift or rgt) + res #Also add the remainder .
relations
9/22 10

Recurrence Relations .
A useful recurrence relation

Def. T(n) = max number of compares to mergesort a list of size < n.
Note. T(n) is monotone nondecreasing.

Recurrence relations specify the cost of executing recursive functions. Mergesort recurrence.

Consider mergesort

0
@ Linear-time cost to divide the lists T(n) < {T([n/z]
@ Two recursive calls are made, each given half the original input
© Linear-time cost to merge the resulting lists together

Recurrence: T(n) =2T(5) + ©(n)

Great, but how does this help us estimate the running time?

ifn=1

) + T(|n/2]) + n otherwise

Solution. T(n) is O(nlog, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

Divide-and-conquer recurrence: proof by recursion tree

Proposition. If T(n) satisfies the following recurrence, then T(n) = n log: n.

ifn=1
T(n) =
() 2T((n/2) + n otherwise

Pf 1.
T (n)

T(n/2) T(n/2)

T(n/4) T(n/4) T(n/4) T(nl4)
logan

T(n/8) T(n/8) T(m/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)

assuming n
is a power of 2

n =n
2 (n/2) =n
4 (n/4) =n
8 (n/8) =n
T(n)=nlgn 4
13 /22

5. DivIDE AND CONQUER

» counting inversions

A2
N\ Agoitim Design

r\ JON KLEINBERG - EVA TARDOS

SECTION 5.3

Proof by induction

Proposition. If T(n) satisfies the following recurrence, then T(n) = n log: n.

ifn=1

Ttn) = { 2T((/2) + n otherwise

Pf 2. [by induction on #]
* Base case: whenn=1, 7(1) = 0.

« Inductive hypothesis: assume T(n) = n log, n.

e Goal: show that 7(2n) = 2n log, (2n).

T(2n) = 2T(n) +2n

2nlogan +2n

2nloga (2n).

Counting inversions

2n (log2(2n)—1) +2n

assuming n
is a power of 2

Music site tries to match your song preferences with others.

* You rank n songs.

e Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

e Myrank: 1,2,...,n.
* Your rank: aj,a, ..., q,.

* Songs i and are inverted if i < j, but a; >

1 3 4

2 inversions: 3-2,4-2

Brute force: check all ®(»2) pairs.

2

aj.

A lclole]
1 2 3 4 5

5

Counting inversions: applications

* Voting theory.

» Collaborative filtering.

* Measuring the "sortedness" of an array.

 Sensitivity analysis of Google's ranking function.

* Rank aggregation for meta-searching on the Web.

* Nonparametric statistics (e.g., Kendall's tau distance).

Rank Aggregation Methods for the Web

Cynthia Dwork" Ravi Kumar' Moni Naor: D. Sivakumar:

ABSTRACT
We c

A primary

effcient, and effective
. vauking fuuctions, meta-

Counting inversions: how to combine two subproblems?

Q. How to count inversions (a, b) with a€ 4 and b€ B?
A. Easy if 4 and B are sorted!

Warmup algorithm.
» Sort 4 and B.
» For each element » € B,
- binary search in 4 to find how elements in 4 are greater than 5.

list A list B

7 10 18 3 14 17 23 2 11 16
sort A sort B

3 7 10 14 18 2 1 16 17 23

3 7 10 14 18 2 11 16 17 23

Counting inversions: divide-and-conquer

» Divide: separate list into two halves 4 and B.

» Conquer: recursively count inversions in each list.

* Combine: count inversions (a, b)) with a €4 and b € B.
* Return sum of three counts.

input

1 5 4 8 10 2 6 9 3 7

count inversions in left half A
1 5 4 8 10 2 6 9 3 7
5-4 6-3 9-3 9-7
count inversions (a, b) withac Aand b e B
1 5 4 8 10 2 6 9 3 7
4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

output 1 + 3 + 13 =17

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with a € 4 and b € B, assuming 4 and B are sorted.
* Scan 4 and B from left to right.
* Compare a; and b;.
* If a;i < b;, then a; is not inverted with any element left in B.
* If a; > bj, then b; is inverted with every element left in 4.
* Append smaller element to sorted list C.

count inversions (a, b) withac AandbeB
ai 18 b; 17 23
* 5 2 *

merge to form sorted list C

2 3 7 10 11

20

Counting inversions: divide-and-conquer algorithm implementation

Input. List L.
Output. Number of inversions in L and sorted list of elements L'.

SORT-AND-COUNT (L)

IF list L has one element
RETURN (0, L).

DIVIDE the list into two halves 4 and B.
(r4 , A) < SORT-AND-COUNT(A).
(r8 , B) < SORT-AND-COUNT(B).
(ras , L') < MERGE-AND-COUNT(4, B).

RETURN (r4+rp+ras, L").

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions
in a permutation of size n in O(n log n) time.

Pf. The worst-case running time T(n) satisfies the recurrence:

@(1) ifn=1
T(n) = T([n/2]) + T(ln/2]) + ©(n) otherwise

N
N}

N
N

