
Height-balanced trees
B trees

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

https://www.cs.princeton.edu/courses/archive/fall12/cos226/lectures.php

B-trees (Bayer-McCreight, 1972)

B tree of order m is a tree with the following properties

1 The root has at least two children unless it is a leaf

2 No node in the tree has more than m children

3 Every node except root and leaves has at least dm2 e children

4 Internal node with k children contains exactly k − 1 keys

Note: 2-3 trees are b-trees with m = 3

2 / 9

Comparison with height-balanced trees

In HB[k] trees, heights were allowed to vary by no more than k

In HB[k] trees, only one key permitted per node

In B-trees, we can have multiple keys per node

In B-trees, we require multiple depth and vary the number of keys per
node to enable cheap inserts and deletes

In practice, we select m to be the biggest number that still fits in a
page, e.g., m = 1024

3 / 9

45

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access

data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

slow fast

https://www.cs.princeton.edu/courses/archive/fall12/cos226/lectures.php

・Start at root.

・Find interval for search key and take corresponding link.

・Search terminates in external node.

* B C

searching for E

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

search for E in
this external node

follow this link because
E is between * and K

follow this link because
E is between D and H

Searching in a B-tree set (M = 6)

47

Searching in a B-tree

・Search for new key.

・Insert at bottom.

・Split nodes with M key-link pairs on the way up the tree.

48

Insertion in a B-tree

* A B C E F H I J K M N O P Q R T

* C H

* K

K Q U

U W X

* A B C E F H I J K M N O P Q R T U W X

* C H K Q U

* A B C E F H I J K M N O P Q R T U W X

* H K Q U

* B C E F H I J K M N O P Q R T U W X

* H K Q U

new key (A) causes
overflow and split

root split causes
a new root to be created

new key (C) causes
overflow and split

Inserting a new key into a B-tree set

inserting A

Rules for insertion in B-tree (courtesy RLW)

Insert a key into B tree:

1 Insert the key into the proper leaf node of the B Tree
2 If no overflow, insert complete. If overflow:

a Try to redistribute keys evenly with left sibling; if fails, then:
b Try to redistribute keys evenly with right sibling; if fails, then:
c Split overflow node into two nodes and promote ‘middle’ key to parent

node. If parent node overflows, repeat step 2. If no parent, then create
one (new root).

4 / 9

Rules for deletion from B-tree (courtesy RLW)

1 Locate the key to be deleted.
2 If the key to be deleted is in a leaf node; delete. Otherwise:

a Locate the next larger key (right child, then left to a leaf node).
b Exchange the next larger key with the key to be deleted. This places

the key to be deleted in a leaf node. Now delete the key.

3 At this point a key has been removed from a leaf node. If there is no
underflow, the delete is completed. If underflow then

a Try to redistribute keys evenly with left sibling; if fails, then:
b Try to redistribute keys evenly with right sibling; if fails, then:
c Combine two nodes into one node (the underflow node with its left

sibling if it has one, otherwise combine the underflow node with the
right sibling) and pull down the “splitter” key from the parent to be
included in the combined node. If there is no underflow in the parent
node, the delete is completed. If the underflow parent node is empty
and is the root of the tree then remove the node, otherwise repeat
starting at Step 3a.

5 / 9

B Tree Exercise

6 / 9

Sizing a b-tree

For order m b-tree:

Maximum tree height for n keys: k = logdm
2
e n

=⇒ Maximum height k is 4 for m = 1024, n = 62 billion

keys supported for height k : n = dm2 e
k

=⇒ For m = 32, k = 3: n = d322 e
3 = 4096

7 / 9

Performance comparison of trees

Tree Worst-case cost Avg.-case cost
(after n inserts) (after n inserts)

search insert delete search insert delete

Unordered List Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n)
Ordered Array Θ(log(n)) Θ(n) Θ(n) Θ(log(n)) Θ(n) Θ(n)

BST Θ(n) Θ(n) Θ(n) Θ(log(n)) Θ(log(n)) Θ(log(n))
AVL Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n))

B-tree Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n))

8 / 9

50

Building a large B tree

full page splits into
two half -full pages

then a new key is added
to one of them

full page, about to split

white: unoccupied portion of page

black: occupied portion of page

each line shows the result
of inserting one key

in some page

Building a large B-tree

B-trees in the real world

B-trees (and variants B* trees, B+ trees, etc.) are widely used for file
systems and databases

Windows: HPFS

Mac: HFS, HFS+

Linux: ReiserFS, XFS, Ext3FS, JFS

Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

9 / 9

