
Height-balanced trees
AVL trees

Tyler Moore

CS 2123, The University of Tulsa

The problem with binary search trees

Search time average case: lg(n)

Search time worst case: n

Can you construct such a tree?

Solution: height-balanced binary trees

2 / 16

Height-balanced trees

Definition

Height of a binary tree is the length of its longest path from root to leaf

Definition

Height-balanced k-tree aka HB[k] tree: binary tree where all left and right
subtrees differ by at most k in height

Definition

AVL tree: HB[1] tree (named for Adelson-Vel’skii and Landis)

Note: AVL trees behave like binary trees for lookup, but vary for insertion
and deletion

3 / 16

Performance of lookups

4 / 16



Height-balanced trees

Definition

Balance Factor aka BF(node) = Height(left subtree) - Height(right
subtree)

BF(node) = 1 =⇒ Left-heavy tree

BF(node) = -1 =⇒ Right-heavy tree

BF(node) = 0 =⇒ Balanced Tree

5 / 16

Spot the AVL tree

6 / 16

AVL insert rules

1 Find position to insert node as in a BST. Identify the deepest level
node along the path that has BF 1 or -1 prior to insertion. Label this
node the pivot.

2 From the pivot node down, recompute balance factors.

3 Check whether any node’s balance factor switched from 1 to 2 or -1
to -2.

4 If balance factor did change to -2 or 2, then a rebalancing at the pivot
is needed.

7 / 16

Insertion Case 1

T1 < A < T2 < B(root) < T3 → T1 < A(root) < T2 < B < T3

8 / 16



Insertion Case 2

T1 < A(root) < T2 < B < T3 → T1 < A < T2 < B(root) < T3

9 / 16

Insertion Case 3

T1 < A < T2 < B < T3 < C (root) < T4 →
T1 < A < T2 < B(root) < T3 < T4

10 / 16

Insertion Case 4

T1 < A(root) < T2 < B < T3 < C < T4 →
T1 < A < T2 < B(root) < T3 < T4

11 / 16

AVL example

Insert in sequence 20,10,40,50,90,30,60,70,5,4,80

12 / 16



In-class exercises

13 / 16

Analysis of AVL trees

How often do we need to rotate?

Cost of an insert that requires rotation

Worst-case cost of a search

14 / 16

Analysis of AVL trees

What is the additional cost of an AVL rotation
1 Locate pivot (additional 1 unit cost per level): O(lg(n))
2 Cost of rotation: O(1)

Conclusion: does not affect the order of the search cost, remains
O(lg(n)) worst case

15 / 16

Concluding thoughts on AVL trees

1 Insertions require at most one rotation and therefore do not affect
lookup costs, but deletions require up to lg(n) rotations

2 On average, 0.465 rotations required per insertion visiting 2.78 nodes
to restore balance

3 52% of the time: no rebalancing, single rotation 23.3% , 23.2%
double rotation

4 AVL preferred over other balanced binary trees if only insertion and
lookup operations required; if deletion required should consider other
options

16 / 16


