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The problem with binary search trees

Search time average case: lg(n)

Search time worst case: n

Can you construct such a tree?

Solution: height-balanced binary trees
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Height-balanced trees

Definition

Height of a binary tree is the length of its longest path from root to leaf

Definition

Height-balanced k-tree aka HB[k] tree: binary tree where all left and right
subtrees differ by at most k in height

Definition

AVL tree: HB[1] tree (named for Adelson-Vel’skii and Landis)

Note: AVL trees behave like binary trees for lookup, but vary for insertion
and deletion
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Performance of lookups
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Height-balanced trees

Definition

Balance Factor aka BF(node) = Height(left subtree) - Height(right
subtree)

BF(node) = 1 =⇒ Left-heavy tree

BF(node) = -1 =⇒ Right-heavy tree

BF(node) = 0 =⇒ Balanced Tree
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Spot the AVL tree
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AVL insert rules

1 Find position to insert node as in a BST. Identify the deepest level
node along the path that has BF 1 or -1 prior to insertion. Label this
node the pivot.

2 From the pivot node down, recompute balance factors.

3 Check whether any node’s balance factor switched from 1 to 2 or -1
to -2.

4 If balance factor did change to -2 or 2, then a rebalancing at the pivot
is needed.
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Insertion Case 1

T1 < A < T2 < B(root) < T3 → T1 < A(root) < T2 < B < T3
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Insertion Case 2

T1 < A(root) < T2 < B < T3 → T1 < A < T2 < B(root) < T3
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Insertion Case 3

T1 < A < T2 < B < T3 < C (root) < T4 →
T1 < A < T2 < B(root) < T3 < T4
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Insertion Case 4

T1 < A(root) < T2 < B < T3 < C < T4 →
T1 < A < T2 < B(root) < T3 < T4
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AVL example

Insert in sequence 20,10,40,50,90,30,60,70,5,4,80
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In-class exercises
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Analysis of AVL trees

How often do we need to rotate?

Cost of an insert that requires rotation

Worst-case cost of a search
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Analysis of AVL trees

What is the additional cost of an AVL rotation
1 Locate pivot (additional 1 unit cost per level): O(lg(n))
2 Cost of rotation: O(1)

Conclusion: does not affect the order of the search cost, remains
O(lg(n)) worst case
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Concluding thoughts on AVL trees

1 Insertions require at most one rotation and therefore do not affect
lookup costs, but deletions require up to lg(n) rotations

2 On average, 0.465 rotations required per insertion visiting 2.78 nodes
to restore balance

3 52% of the time: no rebalancing, single rotation 23.3% , 23.2%
double rotation

4 AVL preferred over other balanced binary trees if only insertion and
lookup operations required; if deletion required should consider other
options
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