Algorithm Analysis Part II

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see $\,$

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Some slides adapted from Dr. Steven Skiena. For more information see http://www.algorist.com

Implications of dominance

- Exponential algorithms get hopeless fast.
- Quadratic algorithms get hopeless at or before 1,000,000.
- $O(n \log n)$ is possible to about one billion.

Why it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2^n	n!
	n	11 1062 11	11	11	1.5		71:
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

3 / 32

Testing dominance

Definition

Dominance g(n) dominates f(n) iff $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$

Definition

Little oh notation f(n) is o(g(n)) iff g(n) dominates f(n).

- In other words, little oh means "grows strictly slower than".
- Q: is $3n \ o(n^2)$?
- A: Yes, since $\lim_{n\to\infty} \frac{3n}{n^2} = \frac{3}{n} = 0$
- Q: is $3n^2 o(n^2)$?
- A:

4/32

Useful facts

Proposition. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c > 0$, then f(n) is $\Theta(g(n))$.

Pf. By definition of the limit, there exists n_0 such such that for all $n \ge n_0$

$$\frac{1}{2}c < \frac{f(n)}{g(n)} < 2c$$

- Thus, $f(n) \le 2 c g(n)$ for all $n \ge n_0$, which implies f(n) is O(g(n)).
- Similarly, $f(n) \ge \frac{1}{2} c g(n)$ for all $n \ge n_0$, which implies f(n) is $\Omega(g(n))$.

Proposition. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$, then f(n) is O(g(n)).

6 / 32

Exercises

- Using the limit formula and results from earlier slides, answer the following:
- Q: Is $5n^2 + 3n \ o(n)$?
- A: No, since $\lim_{n\to\infty} \frac{5n^2+3n}{n} = \lim_{n\to\infty} 5n+3 = \infty$
- Q: is $3n^3 + 5 \Theta(n^3)$?
- A:
- Q: is $n \log n + n^2 O(n^3)$?
- A:

Asymptotic bounds for some common functions

Polynomials. Let $T(n) = a_0 + a_1 n + ... + a_d n^d$ with $a_d > 0$. Then, T(n) is $\Theta(n^d)$.

$$\mathsf{Pf.} \quad \lim_{n \to \infty} \, \frac{a_0 + a_1 n + \ldots + a_d n^d}{n^d} \, = \, a_d \, > \, 0$$

Logarithms. $\Theta(\log_a n)$ is $\Theta(\log_b n)$ for any constants a, b > 0. \longleftarrow no need to specify base (assuming it is a constant)

Logarithms and polynomials. For every d > 0, $\log n$ is $O(n^d)$.

Exponentials and polynomials. For every r > 1 and every d > 0, n^d is $O(r^n)$.

$$\mathbf{Pf.} \quad \lim_{n \to \infty} \, \frac{n^d}{r^n} \, = \, 0$$

7/3

Linear time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of *n* numbers a_1, \ldots, a_n .

$$\begin{aligned} & \max \leftarrow a_1 \\ & \text{for } i = 2 \text{ to n } \{ \\ & \text{if } (a_i > \max) \\ & \max \leftarrow a_i \\ \} \end{aligned}$$

1

Linear time: O(n)

Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_n$ into sorted whole.


```
 \begin{array}{l} i=1, \ j=1 \\ \\ \text{while (both lists are nonempty) } \{ \\ \\ \text{if } (a_i \leq b_j) \text{ append } a_i \text{ to output list and increment i} \\ \\ \text{else} \qquad \text{append } b_j \text{ to output list and increment j} \\ \} \\ \\ \text{append remainder of nonempty list to output list} \\ \end{array}
```

Claim. Merging two lists of size n takes O(n) time.

Pf. After each compare, the length of output list increases by 1.

20

11 / 32

Linearithmic time: O(n log n)

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform $O(n \log n)$ compares.

Largest empty interval. Given n time-stamps $x_1, ..., x_n$ on which copies of a file arrive at a server, what is largest interval when no copies of file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

21

12/3

Quadratic time: O(n²)

Ex. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), ..., (x_n, y_n)$, find the pair that is closest.

O(n2) solution. Try all pairs of points.

```
\begin{aligned} & \min \leftarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 \\ & \text{for } i = 1 \text{ to n } \{ \\ & \text{for } j = i+1 \text{ to n } \{ \\ & \text{d} \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2 \\ & \text{if } (\text{d} < \text{min}) \\ & \text{min} \leftarrow \text{d} \\ & \} \end{aligned}
```

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion. [see Chapter 5]

Cubic time: O(n³)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets $S_1, ..., S_n$ each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?

O(n³) solution. For each pair of sets, determine if they are disjoint.

```
foreach set S<sub>i</sub> {
    foreach other set S<sub>j</sub> {
        foreach element p of S<sub>i</sub> {
            determine whether p also belongs to S<sub>j</sub>
        }
        if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
            report that S<sub>i</sub> and S<sub>j</sub> are disjoint
    }
}
```

23

Polynomial time: O(nk)

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge? k is a constant

 $O(n^k)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
  check whether S in an independent set
  if (S is an independent set)
     report S is an independent set
```

- Check whether S is an independent set takes $O(k^2)$ time.
- $= \frac{n(n-1)(n-2)\times\cdots\times(n-k+1)}{k(k-1)(k-2)\times\cdots\times1} \le \frac{n^k}{k!}$ • Number of k element subsets = $\binom{n}{k}$ • $O(k^2 n^k / k!) = O(n^k)$.
- poly-time for k=17, but not practical

15 / 32

Exponential time

Independent set. Given a graph, what is maximum cardinality of an independent set?

O(n² 2ⁿ) solution. Enumerate all subsets.

```
S* ← φ
foreach subset S of nodes {
  check whether S in an independent set
  if (S is largest independent set seen so far)
      update S* ← S
```

Sublinear time

Search in a sorted array. Given a sorted array A of n numbers, is a given number x in the array?

O(log n) solution. Binary search.

```
1o ← 1, hi ← n
while (lo ≤ hi) {
   mid \leftarrow (lo + hi) / 2
   if (x < A[mid]) hi \leftarrow mid - 1
   else if (x > A[mid]) lo \leftarrow mid + 1
   else return yes
return no
```

Common algorithm dominance classes

Dominance class	Example problem types
1	Operations independent of input size (e.g., addition, $min(x,y)$, etc.)
log n	Binary search
n	Operating on every element in an array
$n \log n$	Quicksort, mergesort
n^2	Operating on every pair of items
n^3	Operating on every triple of items
2 ⁿ	Enumerating all subsets of n items
<i>n</i> !	Enumerating all orderings of n items

17 / 32 18 / 32

Python Algorithm Development Process

- Think hard about the problem you're trying to solve. Specify the expected inputs for which you'd like to provide a solution, and the expected outputs.
- ② Describe a method to solve the problem using English and/or pseudo-code
- Start coding
 - Development/Debugging phase
 - Testing phase (for correctness)
 - 3 Evaluation phase (performance)

Let's use the insertion sort as an example of the development process in Python

Debugging in Python

- Main strategy: run code in the interpreter to get instant feedback on errors
- Backup: Generous use of print statements
- Once code is running in functions: pdb.pm() (Python debugger post-mortem)

20 / 32 21 / 32

Main strategy: run code in the interpreter

```
>>> s = [2,7,4,5,9]
>>>
>>> for i in range(s):
        minidx = i
        for j in range(i,len(s)):
          if s[j] < s[minidx]:</pre>
                minidx=i
                s[i],s[minidx]=s[minidx],s[i]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: range() integer end argument expected, got list.
>>> s
[2, 7, 4, 5, 9]
>>> range(s)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: range() integer end argument expected, got list.
>>> len(s)
>>> range(len(s))
[0, 1, 2, 3, 4]
```

Second strategy: print variables out during execution

```
>>> for i in range(len(s)):
        minidx = i
        for j in range(i,len(s)):
            print 'list: %s, i: %i, j: %i, minidx: %i'%(s,i,j,minidx)
            if s[j] < s[minidx]:</pre>
                print "reassigning minidx %i < %i" %(s[j],s[minidx])</pre>
                minidx=j
                s[i],s[minidx]=s[minidx],s[i]
list: [2, 7, 4, 5, 9], i: 0, j: 0, minidx: 0
list: [2, 7, 4, 5, 9], i: 0, j: 1, minidx: 0
list: [2, 7, 4, 5, 9], i: 0, j: 2, minidx: 0
list: [2, 7, 4, 5, 9], i: 0, j: 3, minidx: 0
list: [2, 7, 4, 5, 9], i: 0, j: 4, minidx: 0
list: [2, 7, 4, 5, 9], i: 1, j: 1, minidx: 1
list: [2, 7, 4, 5, 9], i: 1, j: 2, minidx: 1
reassigning minidx 4 < 7
list: [2, 4, 7, 5, 9], i: 1, j: 3, minidx: 2
reassigning minidx 5 < 7
list: [2, 5, 7, 4, 9], i: 1, j: 4, minidx: 3
list: [2, 5, 7, 4, 9], i: 2, j: 2, minidx: 2
list: [2, 5, 7, 4, 9], i: 2, j: 3, minidx: 2
reassigning minidx 4 < 7
list: [2, 5, 4, 7, 9], i: 2, j: 4, minidx: 3
list: [2, 5, 4, 7, 9], i: 3, j: 3, minidx: 3
list: [2, 5, 4, 7, 9], i: 3, j: 4, minidx: 3
list: [2, 5, 4, 7, 9], i: 4, j: 4, minidx: 4
```

22 / 32

Second strategy: print variables out during execution

```
>>> for i in range(1,len(s)):
        minidx = i
        for j in range(i+1,len(s)):
            print 'list: %s, i: %i, j: %i, minidx: %i'%(s,i,j,minidx)
            if s[j] < s[minidx]:</pre>
                print "reassigning minidx %i < %i" %(s[j],s[minidx])</pre>
                minidx=j
        s[i],s[minidx]=s[minidx],s[i]
list: [2, 7, 4, 5, 9], i: 1, j: 2, minidx: 1
reassigning minidx 4 < 7
list: [2, 7, 4, 5, 9], i: 1, j: 3, minidx: 2
list: [2, 7, 4, 5, 9], i: 1, j: 4, minidx: 2
list: [2, 4, 7, 5, 9], i: 2, j: 3, minidx: 2
reassigning minidx 5 < 7
list: [2, 4, 7, 5, 9], i: 2, j: 4, minidx: 3
list: [2, 4, 5, 7, 9], i: 3, j: 4, minidx: 3
```

Third strategy: use Python debugger

- Once you've gotten rid of the obvious bugs, move the code to a function.
- But what happens if you start getting run-time errors on different inputs?
- You can copy code directly into the interpreter
- Or you can run pdb.pm() to access variables in the environment at the time of the error

24 / 32 25 / 32

After debugging comes testing

- While you might view them as synonyms, testing is more systematic checking that algorithms work for a range of inputs, not just the ones that cause obvious bugs
- Use Python assert command to verify expected behavior

assert in action

```
>>> s
[2, 5, 4, 7, 9]
>>> t = list(s)
>>> t.sort()
>>>
>>> assert t == s
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
AssertionError
>>> t
[2, 4, 5, 7, 9]
>>> s
[2, 5, 4, 7, 9]
```

26 / 32 27 / 32

Using random to generate inputs

```
>>> import random, timeit
>>> 110=range(10)
>>> 110
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> random.shuffle(110)
>>> 110
[4, 2, 0, 3, 8, 1, 9, 7, 6, 5]
>>> unsortl10 = list(110)
>>> unsortl10
[4, 2, 0, 3, 8, 1, 9, 7, 6, 5]
>>> 110.sort()
>>> 110
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> unsortl10
[4, 2, 0, 3, 8, 1, 9, 7, 6, 5]
>>> assert selection_sort(unsortl10) == 110
```

Using assert on many inputs

```
#try 10 different shufflings of each list
for i in range(10):
    #try all lists between 1 and 500 elements
    print 'trying %i time'%(i)
    for j in range(500):
        1 = range(j)
        random.shuffle(1) #reorder the list
        ul = list(1)  #make a copy of the unordered list
        l.sort()  #do a known correct sort
        assert selection_sort(ul) == 1 #compare sorts
```

29 / 32

28/32

Don't forget to look for counterexamples

- Using assert works when you have a known correct solution to compare against
- This frequently occurs when you have a known working algorithm, but you are developing a more efficient one
- While testing lots of random inputs is a good strategy, don't forget to examine edge cases and potential counterexamples too

Empirically evaluating performance

- Once you are confident that your algorithm is correct, you can evaluate its performance empirically
- Python's timeit package repeatedly runs code and reports average execution time
- timeit arguments
 - code to be executed in string form
 - 2 any setup code that needs to be run before executing the code (note: setup code is only run once)
 - parameter 'number', which indicates the number of times to run the code (default is 1000000)

30 / 32 31 / 32

Timeit in action: timing Python's sort function and our selection sort

```
#store function in file called sortfun.py
import random
def sortfun(size):
   l = range(1000)
    random.shuffle(1)
   1.sort()
>>> timeit.timeit("sortfun(1000)","from sortfun import sortfun",number=100)
0.0516510009765625
>>> #here is the wrong way to test the built-in sort function
... timeit.timeit("l.sort()", "import random; l = range(1000); random.shuffle(l)"
  ,number=100)
0.0010929107666015625
>>> #let's compare it to our selection sort
>>> timeit.timeit("selection_sort(1)","from selection_sort import selection_sort;
  import random; l = range(1000); random.shuffle(l)",number=100)
3.0629560947418213
```