
Algorithm Analysis
Part I

Tyler Moore

CS 2123, The University of Tulsa

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos.

Some slides adapted from Dr. Steven Skiena. For more information see http://www.algorist.com

3

A strikingly modern thought

Analytic Engine

“ As soon as an Analytic Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will arise—By what course of calculation can these results be arrived at by

 the machine in the shortest time? ” — Charles Babbage (1864)

how many times do you
have to turn the crank?

3 / 28

4

Brute force

Brute force. For many nontrivial problems, there is a natural brute-force

search algorithm that checks every possible solution.

・Typically takes 2n time or worse for inputs of size n.

・Unacceptable in practice.

4 / 28

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

5

Polynomial running time

Desirable scaling property. When the input size doubles, the algorithm

should only slow down by some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

choose C = 2d

There exists constants c > 0 and d > 0 such that
on every input of size n, its running time is bounded

by c nd primitive computational steps.

5 / 28

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.algorist.com

We say that an algorithm is efficient if has a polynomial running time.

Justification. It really works in practice!

・In practice, the poly-time algorithms that people develop have low

constants and low exponents.

・Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem.

Exceptions. Some poly-time algorithms do have high constants

and/or exponents, and/or are useless in practice.

Q. Which would you prefer 20 n100 vs. n1 + 0.02 ln n ?

6

Polynomial running time

Map graphs in polynomial time

Mikkel Thorup
Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

mthorup@diku.dk

Abstract

Chen,Grigni, andPapadimitriou (WADS’97 andSTOC’98)
have introduced a modified notion of planarity, where two
faces are considered adjacent if they share at least one point.
The corresponding abstract graphs are called map graphs.
Chen et.al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point — if only 3 are allowed to intersect in a point, we
get the usual planar graphs.

Chen et.al. conjectured that map graphs can be recognized
in polynomial time, and in this paper, their conjecture is settled
affirmatively.

1. Introduction

Recently Chen, Grigni, and Papadimitriou [4, 5] suggested
the study of a modified notion of planarity. The basic frame-
work is the same as that of planar graphs. We are given a set of
non-overlapping faces in the plane, each being a disc homeo-
morphism. By non-overlapping, we mean that two faces may
only intersect in their boundaries. The plane may or may not
be completely covered by the faces. A traditional planar graph
is obtained as follows. The vertices are the faces, and two
faces are neighbors if their intersection contains a non-trivial
curve. Chen et.al. [4, 5] suggested simplifying the definition,
by saying that two faces are neighbors if and only if they in-
tersect in at least one point. They called the resulting graphs
“planar map graphs”. Here we will just call themmap graphs.
Note that there are non-planar map graphs, for as illustrated
in Figure 1, map graphs can contain arbitrarily large cliques.
We shall refer to the first type of clique as a flower with the
petals intersecting in a center. The second is a hamantash
based on three distinct corner points. Each of the three pairs
of corner points is connected by a side of parallel faces. In

Most of this work was done while the author visited MIT.
Chen et.al. called flowers for pizzas, but “flower” seems more natural.

Figure 1. Large cliques in maps

addition, the hamantach may have at most two triangle faces
touching all three corners. In [5] there is a classification of
all the different types of large cliques in maps. Chen et.al. [5]
showed that recognizing map graphs is in NP, hence that the
recognition can be done in singly exponential time. However,
they conjectured that, in fact, map graphs can be recognized in
polynomial time. They supported their conjecture by showing
that if we allow at most 4 faces to meet in any single point, the
resultingmap graphs can be recognized in polynomial time. In
this paper, we settle the general conjecture, showing that given
a graph, we can decide in polynomial time if it is a map graph.
The algorithm can easily be modified to draw a corresponding
map if it exists.

Map coloring It should be noted that coloring of map graphs
dates back to Ore and Plummer in 1969 [8], that is, theywanted
to color the faces so that any two intersecting facesgot different
colors. For an account of colorful history, the reader is referred
to [7, 2.5]. In particular, the history provides an answer to a
problem of Chen et.al. [5]: if at most 4 facesmeet in any single
point, canwe color themapwith 6 colors? It is straightforward
to see that the resulting graphs are 1-planar, meaning that they
can be drawn in the plane such that each edge is crossed by at
most one other edge. Already in 1965, Ringel [9] conjectured
that all 1-planar graphs can be colored with 6 colors, and this
conjecture was settled in 1984 by Borodin [2], so the answer
to Chen et.al.’s problem is: yes.

Map metrics The shortest path metrics of map graphs are
commonly used in prizing systems, where you pay for cross-

Map graphs in polynomial time

Mikkel Thorup
Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

mthorup@diku.dk

Abstract

Chen,Grigni, andPapadimitriou (WADS’97 andSTOC’98)
have introduced a modified notion of planarity, where two
faces are considered adjacent if they share at least one point.
The corresponding abstract graphs are called map graphs.
Chen et.al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point — if only 3 are allowed to intersect in a point, we
get the usual planar graphs.

Chen et.al. conjectured that map graphs can be recognized
in polynomial time, and in this paper, their conjecture is settled
affirmatively.

1. Introduction

Recently Chen, Grigni, and Papadimitriou [4, 5] suggested
the study of a modified notion of planarity. The basic frame-
work is the same as that of planar graphs. We are given a set of
non-overlapping faces in the plane, each being a disc homeo-
morphism. By non-overlapping, we mean that two faces may
only intersect in their boundaries. The plane may or may not
be completely covered by the faces. A traditional planar graph
is obtained as follows. The vertices are the faces, and two
faces are neighbors if their intersection contains a non-trivial
curve. Chen et.al. [4, 5] suggested simplifying the definition,
by saying that two faces are neighbors if and only if they in-
tersect in at least one point. They called the resulting graphs
“planar map graphs”. Here we will just call themmap graphs.
Note that there are non-planar map graphs, for as illustrated
in Figure 1, map graphs can contain arbitrarily large cliques.
We shall refer to the first type of clique as a flower with the
petals intersecting in a center. The second is a hamantash
based on three distinct corner points. Each of the three pairs
of corner points is connected by a side of parallel faces. In

Most of this work was done while the author visited MIT.
Chen et.al. called flowers for pizzas, but “flower” seems more natural.

Figure 1. Large cliques in maps

addition, the hamantach may have at most two triangle faces
touching all three corners. In [5] there is a classification of
all the different types of large cliques in maps. Chen et.al. [5]
showed that recognizing map graphs is in NP, hence that the
recognition can be done in singly exponential time. However,
they conjectured that, in fact, map graphs can be recognized in
polynomial time. They supported their conjecture by showing
that if we allow at most 4 faces to meet in any single point, the
resultingmap graphs can be recognized in polynomial time. In
this paper, we settle the general conjecture, showing that given
a graph, we can decide in polynomial time if it is a map graph.
The algorithm can easily be modified to draw a corresponding
map if it exists.

Map coloring It should be noted that coloring of map graphs
dates back to Ore and Plummer in 1969 [8], that is, theywanted
to color the faces so that any two intersecting facesgot different
colors. For an account of colorful history, the reader is referred
to [7, 2.5]. In particular, the history provides an answer to a
problem of Chen et.al. [5]: if at most 4 facesmeet in any single
point, canwe color themapwith 6 colors? It is straightforward
to see that the resulting graphs are 1-planar, meaning that they
can be drawn in the plane such that each edge is crossed by at
most one other edge. Already in 1965, Ringel [9] conjectured
that all 1-planar graphs can be colored with 6 colors, and this
conjecture was settled in 1984 by Borodin [2], so the answer
to Chen et.al.’s problem is: yes.

Map metrics The shortest path metrics of map graphs are
commonly used in prizing systems, where you pay for cross-

6 / 28

Worst case. Running time guarantee for any input of size n.

・Generally captures efficiency in practice.

・Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice

because the worst-case instances seem to be rare.

7

Worst-case analysis

simplex algorithm Linux grep k-means algorithm

7 / 28

8

Types of analyses

Worst case. Running time guarantee for any input of size n.

Ex. Heapsort requires at most 2 n log2 n compares to sort n elements.

Probabilistic. Expected running time of a randomized algorithm.

Ex. The expected number of compares to quicksort n elements is ~ 2n ln n.

Amortized. Worst-case running time for any sequence of n operations.

Ex. Starting from an empty stack, any sequence of n push and pop

operations takes O(n) operations using a resizing array.

Average-case. Expected running time for a random input of size n.

Ex. The expected number of character compares performed by 3-way

radix quicksort on n uniformly random strings is ~ 2n ln n.

Also. Smoothed analysis, competitive analysis, ...

8 / 28

9

Why it matters

9 / 28

Upper bounds. T(n) is O(f (n)) if there exist constants c > 0 and n0 ≥ 0
such that T(n) ≤ c · f (n) for all n ≥ n0.

Ex. T(n) = 32n2 + 17n + 1.

・T(n) is O(n2).

・T(n) is also O(n3).

・T(n) is neither O(n) nor O(n log n).

Typical usage. Insertion makes O(n2) compares to sort n elements.

Alternate definition. T(n) is O(f (n)) if

11

Big-Oh notation

choose c = 50, n0 = 1

lim sup
n��

T (n)

f(n)
< �.

c · f (n)

nn0

T(n)

11 / 28

Equals sign. O(f (n)) is a set of functions, but computer scientists often write

T(n) = O(f (n)) instead of T(n) ∈ O(f (n)).

Ex. Consider f (n) = 5n3 and g (n) = 3n2 .

・We have f (n) = O(n3) = g(n).

・Thus, f (n) = g(n).

Domain. The domain of f (n) is typically the natural numbers { 0, 1, 2, … }.

・Sometimes we restrict to a subset of the natural numbers.

Other times we extend to the reals.

Nonnegative functions. When using big-Oh notation, we assume that the

functions involved are (asymptotically) nonnegative.

Bottom line. OK to abuse notation; not OK to misuse it.

12

Notational abuses

12 / 28

13

Big-Omega notation

Lower bounds. T(n) is Ω(f (n)) if there exist constants c > 0 and n0 ≥ 0
such that T(n) ≥ c · f (n) for all n ≥ n0.

Ex. T(n) = 32n2 + 17n + 1.

・T(n) is both Ω(n2) and Ω(n).

・T(n) is neither Ω(n3) nor Ω(n3 log n).

Typical usage. Any compare-based sorting algorithm requires Ω(n log n)
compares in the worst case.

Meaningless statement. Any compare-based sorting algorithm requires

at least O(n log n) compares in the worst case.

choose c = 32, n0 = 1

T(n)

nn0

c · f (n)

13 / 28

14

Big-Theta notation

Tight bounds. T(n) is Θ(f (n)) if there exist constants c1 > 0, c2 > 0, and n0 ≥ 0
such that c1 · f (n) ≤ T(n) ≤ c2 · f (n) for all n ≥ n0.

Ex. T(n) = 32n2 + 17n + 1.

・T(n) is Θ(n2).

・T(n) is neither Θ(n) nor Θ(n3).

Typical usage. Mergesort makes Θ(n log n) compares to sort n elements.

choose c1 = 32, c2 = 50, n0 = 1

T(n)

nn0

c1 · f (n)

c2 · f (n)

14 / 28

Big Oh Examples

Definition

T (n) is O(f (n)) if there exist constants c > 0 and n0 ≥ 0 such that
T (n) ≤ c · f (n) for all n ≥ n0.

1 3n2 + 4n + 6 = O(n2)?

Yes, because for c = 13 and no ≥ 1,
3n2 + 4n + 6 ≤ 3n2 + 4n2 + 6n2 = 13n2

2 3n2 + 4n + 6 = O(n3)?

Yes, because for c = 1 and no ≥ 13,
3n2 + 4n + 6 ≤ 3n2 + 4n2 + 6n2 = 13n2 ≤ 13n3

3 3n2 + 4n + 6 = O(n)?

No, because c · n < 3n2 + 4n + 6 when n > c

15 / 28

Big Omega Examples

Definition

T (n) is Ω(f (n)) if there exist constants c > 0 and n0 ≥ 0 such that
T (n) ≥ c · f (n) for all n ≥ n0.

1 3n2 + 4n + 6 = Ω(n2)?

Yes, because for c = 2 and no ≥ 1, 3n2 + 4n + 6 ≥ 2n2

2 3n2 + 4n + 6 = Ω(n3)?

No, because for c = 13 and no ≥ 1, 3n2 + 4n + 6 < 13n3

3 3n2 + 4n + 6 = Ω(n)?

Yes, because for c = 2 and n0 ≥ 100, 3n2 + 4n + 6 > 2n

16 / 28

Big Theta Examples

Definition

T (n) is Θ(f (n)) if there exist constants c1 > 0, c2 > 0 and n0 ≥ 0 such
that c1 · f (n) ≤ T (n) ≤ c2 · f (n) for all n ≥ n0.

1 3n2 + 4n + 6 = Θ(n2)?

Yes, because O and Ω apply

2 3n2 + 4n + 6 = Θ(n3)?

No, because only O applies

3 3n2 + 4n + 6 = Θ(n)?

No, because only Ω applies

17 / 28

Exercises

1 Is 3n + 4n = O(n2)? (yes or no)

2 Is 2n + 10n = Ω(n3)? (yes or no)

3 Pick a suitable c and n0 to show that 3n2 + 2n = Ω(n2)

18 / 28

Big Oh Addition/Subtraction

Suppose f (n) = O(n2) and g(n) = O(n2).

What do we know about g ′(n) = f (n) + g(n)?

Adding bounding constants shows g ′(n) = O(n2)

What do we know about g ′′(n) = f (n)− g(n)?

Since bounding constants may not cancel, g ′′(n) = O(n2)

What about lower bounds? Does g ′(n) = Ω(n2)

We know nothing about lower bounds on g ′ and g ′′ because we don’t
know about the lower bounds on f and g .

19 / 28

Big Oh Multiplication

Multiplication by a constant does not change the asymptotics

O(c · f (n))→ O(f (n))
Ω(c · f (n))→ Ω(f (n))
Θ(c · f (n))→ Θ(f (n))

But when both functions in a product are increasing, both are
important

O(f (n)) · O(g(n))→ O(f (n) · g(n))
Ω(f (n)) · Ω(g(n))→ Ω(f (n) · g(n))
Θ(f (n)) ·Θ(g(n))→ Θ(f (n) · g(n))

20 / 28

17

Big-Oh notation with multiple variables

Upper bounds. T(m, n) is O(f (m, n)) if there exist constants c > 0, m0 ≥ 0,

and n0 ≥ 0 such that T(m, n) ≤ c · f (m, n) for all n ≥ n0 and m ≥ m0.

Ex. T(m, n) = 32mn2 + 17mn + 32n3.

・T(m, n) is both O(mn2 + n3) and O(mn3).

・T(m, n) is neither O(n3) nor O(mn2).

Typical usage. Breadth-first search takes O(m + n) time to find the shortest

path from s to t in a digraph.

Logarithms

It is important to understand deep in your bones what logarithms are
and where they come from.

A logarithm is simply an inverse exponential function.

Saying bx = y is equivalent to saying that x = logb y .

Logarithms reflect how many times we can double something until we
get to n, or halve something until we get to 1.

22 / 28

Binary Search and Logarithms

In binary search we throw away half the possible number of keys after
each comparison.

Thus twenty comparisons suffice to find any name in the million-name
Manhattan phone book!

Question: how many times can we halve n before getting to 1?

Answer: dlg ne

23 / 28

Logarithms and Binary Trees

How tall a binary tree do we need until we have n leaves?

→ The number of potential leaves doubles with each level.

How many times can we double 1 until we get to n?

Answer: dlg ne

24 / 28

Logarithms and Bits

How many bits do you need to represent the numbers from 0 to
2i − 1?

Answer: Each bit you add doubles the possible number of bit
patterns, so the number of bits equals lg(2i) = i .

25 / 28

Logarithms and Multiplication

Recall that loga(xy) = loga(x) + loga(y)

This is how people used to multiply before calculators, and remains
useful for analysis.

What if x = a?

Since a1 = a, loga a = 1, and thus loga(a× y) = 1 + loga(y)

26 / 28

The Base is not Asymptotically Important

Recall the definition, c logc x = x and that

logb a =
logc a

logc b

So for a = 2 and c = 100:

log2 n =
log100 n

log100 2

Since 1
log100 2 = 6.643 is a constant, we can ignore it when calculating

Big Oh

27 / 28

Federal Sentencing Guidelines
F1.1. Fraud and Deceit; Forgery; Offenses Involving Altered or Counterfeit Instruments other than Counterfeit Bearer

Obligations of the United States. (a) Base offense Level: 6 (b) Specific offense Characteristics (1) If the loss exceeded $2,000,

increase the offense level as follows:

Loss(Apply the Greatest) Increase in Level

(A) $2,000 or less no increase
(B) More than $2,000 add 1
(C) More than $5,000 add 2
(D) More than $10,000 add 3
(E) More than $20,000 add 4
(F) More than $40,000 add 5
(G) More than $70,000 add 6
(H) More than $120,000 add 7
(I) More than $200,000 add 8
(J) More than $350,000 add 9
(K) More than $500,000 add 10
(L) More than $800,000 add 11
(M) More than $1,500,000 add 12
(N) More than $2,500,000 add 13
(O) More than $5,000,000 add 14
(P) More than $10,000,000 add 15
(Q) More than $20,000,000 add 16
(R) More than $40,000,000 add 17
(Q) More than $80,000,000 add 18

The increase in punishment level
grows logarithmically in the
amount of money stolen.

Thus it pays to commit one big
crime rather than many small
crimes totaling the same
amount.

In other words, Make the
Crime Worth the Time

28 / 28

	Computational Tractability
	Asymptotic Order of Growth
	Logarithms

