A strikingly modern thought

Algorithm Analysis
Part | “ As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question

will arise— By what course of calculation can these results be arrived at by

Tyler Moore the machine in the shortest time? ” — Charles Babbage (1864)

CS 2123, The University of Tulsa —

how many times do you
have to turn the crank?

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos.

AR R
L vy

Some slides adapted from Dr. Steven Skiena. For more information see http://www.algorist.com

Analytic Engine

Brute force Polynomial running time
Brute force. For many nontrivial problems, there is a natural brute-force Desirable scaling property. When the input size doubles, the algorithm
search algorithm that checks every possible solution. should only slow down by some constant factor C.

* Typically takes 2» time or worse for inputs of size n.
» Unacceptable in practice.

Def. An algorithm is poly-time if the above scaling property holds.

There exists constants ¢ > 0 and d > 0 such that
on every input of size n, its running time is bounded «—— choose C=2¢
by ¢ nd primitive computational steps.

-
N2/ =

von Neumann Godel Cobham Edmonds Rabin

(1953) (1955) (1956) (1964) (1965) (1966)

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.algorist.com

Polynomial running time

We say that an algorithm is efficient if has a polynomial running time.

Justification. It really works in practice!
 In practice, the poly-time algorithms that people develop have low
constants and low exponents.
« Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem.

Exceptions. Some poly-time algorithms do have high constants
and/or exponents, and/or are useless in practice.

Map graphs in polynomial time

Q. Which would you prefer 201! vs, pl+002Inn ?

Abstract

Types of analyses

Worst case. Running time guarantee for any input of size n.
Ex. Heapsort requires at most 2nlogzn compares to sort n elements.

Probabilistic. Expected running time of a randomized algorithm.
Ex. The expected number of compares to quicksort » elements is ~2#n In n.

Amortized. Worst-case running time for any sequence of » operations.
Ex. Starting from an empty stack, any sequence of » push and pop
operations takes O(n) operations using a resizing array.

Average-case. Expected running time for a random input of size ».

Ex. The expected number of character compares performed by 3-way
radix quicksort on » uniformly random strings is ~2n In n.

Also. Smoothed analysis, competitive analysis, ...

3
8

Worst-case analysis

Worst case. Running time guarantee for any input of size n.
» Generally captures efficiency in practice.
» Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice
because the worst-case instances seem to be rare.

Optimal 1
solution
sl grep
THEREFORE. 1 B!
|
5
r_
simplex algorithm Linux grep k-means algorithm

~
8

Why it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as
taking a very long time.

n nlog, n n? n? 115" e n!
n=10 < 1sec < 1sec < 1sec < 1sec < 1sec < 1sec 4 sec
n=30 <lsec <lsec <1sec < 1sec <1 sec 18 min 10% years
n=>50 < 1sec < 1sec < 1sec < 1sec 11 min 36 years very long
n =100 < 1sec < 1sec < 1sec 1 sec 12,892 years 1017 years very long

n=1,000 < 1sec < 1sec 1 sec 18 min very long very long very long
n=10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n =1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Big-Oh notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢>0 and n, > 0
such that 7T(n) < ¢ f(n) for all n > n,.

Ex. T(n)=32n2+17n+ 1.
* T(n) is O(n?). <— choosec=50,no=1
e T(n) is also O(n3).
* T(n) is neither O(n) nor O(n log n).

no n

Typical usage. Insertion makes O(n?) compares to sort n elements.

Alternate definition. T(n) is O(f(n)) if limsup % <

Big-Omega notation

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢>0 and n, > 0
such that 7T(n) > ¢ f(n) for all n > n,.

Ex. T(n)=32n>+17n+1.
* T(n) is both Q(n?) and Q(n). <«— choose c=32,no=1
* T(n) is neither Q(»n?) nor Q(n3 log n).

no n

Typical usage. Any compare-based sorting algorithm requires Q(n log n)
compares in the worst case.

Meaningless statement. Any compare-based sorting algorithm requires
at least O(n log n) compares in the worst case.

13 /28

Notational abuses

Equals sign. O(f(n)) is a set of functions, but computer scientists often write
T(n) = O(f(n)) instead of T(n) € O(f(n)).

Ex. Consider f(n)=5n° and g(n)=3n2.
* We have f(n) = O(n®) = g(n).
e Thus, f(n) = g(n).

Domain. The domain of f(n) is typically the natural numbers {0,1,2, ... }.
* Sometimes we restrict to a subset of the natural numbers.

Other times we extend to the reals.

Nonnegative functions. When using big-Oh notation, we assume that the
functions involved are (asymptotically) nonnegative.

Bottom line. OK to abuse notation; not OK to misuse it.

Big-Theta notation

Tight bounds. T(n) is ®(f(n)) if there exist constants ¢1>0, c2>0, and n, > 0
such that c¢i - f(n) < T(n) < 2 f(n) forall n > n,. o s

T(n)

Ex. T(n)=32n2+17n+ 1.
. T(n) is G)(nz)_ <«— choose c1 =32,¢c2=50,no=1

e T(n) is neither O(n) nor O(3).

ci-f(n)

no n

Typical usage. Mergesort makes ®(n log n) compares to sort n elements.

14 /28

Big Oh Examples

Definition

T(n) is O(f(n)) if there exist constants ¢ > 0 and ng > 0 such that
T(n) < c-f(n) forall n > ng.

@ 30’ +4n+6 = O(n?)?
e Yes, because for c =13 and n, > 1,
3n? +4n+6 < 3n%> 4+ 4n? + 6n® = 13n?
Q@ 3n® +4n+6= 0(n®)?
o Yes, because for c =1 and n, > 13,
3n% +4n+6 < 3n® +4n® + 6n* = 13n° < 13n°
© 3n® +4n+6= 0(n)?

o No, because c-n < 3n%+4n+6 when n> c

Big Theta Examples

Definition

T(n) is ©(f(n)) if there exist constants ¢; > 0, > 0 and ng > 0 such
that ¢; - f(n) < T(n) < ¢ - f(n) for all n > ny.

Q 3n® +4n+6=0(n?)?

e Yes, because O and Q apply
Q 3n® +4n+6=0(n%)?

e No, because only O applies
© 3n+4n+6=0(n)?

e No, because only Q applies

Big Omega Examples

Definition

T(n) is Q(f(n)) if there exist constants ¢ > 0 and ng > 0 such that

T(n) > c- f(n) for all n > ng.

Q 30’ +4n+6 = Q(n?)?

o Yes, because for c =2 and n, > 1, 3n®> +4n+ 6 > 2n?
Q 3n® +4n+6 =Q(n%)?

e No, because for c = 13 and n, > 1, 3n® +4n+ 6 < 13n°
© 3n® +4n+6=Q(n)?

o Yes, because for ¢ =2 and ng > 100, 3n° +4n+6 > 2n

Exercises

@ Is 3n+4n= 0O(n?)? (yes or no)
@ Is 2" +10n = Q(n*)? (yes or no)

@ Pick a suitable ¢ and ng to show that 3n? + 2n = Q(n?)

Big Oh Addition/Subtraction Big Oh Multiplication

e Suppose f(n) = O(n?) and g(n) = O(n?). @ Multiplication by a constant does not change the asymptotics

e What do we know about g’(n) = f(n) + g(n)? o O(c-f(n)) — O(f(n))
. . / 2 o Q(c-f(n)) — Q(f(n))
o Adding bounding constants shows g’(n) = O(n?) o O(c - f(n) — O(F(m)

"(n) = _ ?
° What -do we knc?w about g"(n) = f(n) — g(n)? @ But when both functions in a product are increasing, both are
o Since bounding constants may not cancel, g”(n) = O(n?)

important
e What about lower bounds? Does g’(n) = Q(n?) o O(f(n))- O(g(n)) = O(F(n) - g(n))
o We know nothing about lower bounds on g’ and g’ because we don't o Q(f(n))-Qg(n)) — Q(f(n) - g(n))
know about the lower bounds on f and g. o O(f(n))-O(g(n)) — ©(f(n) - g(n))
19/28 20/28
Logarithms

Big-Oh notation with multiple variables

Upper bounds. T(m,n) is O(f(m,n)) if there exist constants ¢>0, m, = 0,
and n,> 0 such that T(m,n) < c-f(m,n) for all n = nyand m > m,,.

Ex. T(m,n)=32mn?+ 17mn + 32n3.
* T(m,n) is both O(mn? + n3) and O(mn3).
* T(m,n) is neither O(n3) nor O(mn?).

It is important to understand deep in your bones what logarithms are
and where they come from.

A logarithm is simply an inverse exponential function.

Typical usage. Breadth-first search takes O(m + n) time to find the shortest
path from s to ¢ in a digraph.

Saying b* = y is equivalent to saying that x = log, y.

Logarithms reflect how many times we can double something until we
get to n, or halve something until we get to 1.

Binary Search and Logarithms

@ In binary search we throw away half the possible number of keys after
each comparison.

@ Thus twenty comparisons suffice to find any name in the million-name
Manhattan phone book!

@ Question: how many times can we halve n before getting to 17

Logarithms and Bits

@ How many bits do you need to represent the numbers from 0 to
2/ — 17

Logarithms and Binary Trees

@ How tall a binary tree do we need until we have n leaves?
— The number of potential leaves doubles with each level.

@ How many times can we double 1 until we get to n?

Logarithms and Multiplication

@ Recall that log,(xy) = loga(x) + loga(y)

@ This is how people used to multiply before calculators, and remains
useful for analysis.

o What if x = a?

The Base is not Asymptotically Important

@ Recall the definition, c!°8<* = x and that

log. a
log, a = —<
&b log. b
So for a =2 and ¢ = 100:
logigg N
logon = —"—
2 log100 2

@ Since —L1—~ = 6.643 is a constant, we can ignore it when calculating
B O}|1C>g1oo2
g

N
~
IN)
®

Federal Sentencing Guidelines

F1.1. Fraud and Deceit; Forgery; Offenses Involving Altered or Counterfeit Instruments other than Counterfeit Bearer

Obligations of the United States. (a) Base offense Level: 6 (b) Specific offense Characteristics (1) If the loss exceeded $2,000,

increase the offense level as follows:

Loss(Apply the Greatest) Increase in Level

(A) $2,000 or less no increase
(B) More than $2,000 add 1
(C) More than $5,000 add 2
(D) More than $10,000 add 3
(E) More than $20,000 add 4
(F) More than $40,000 add 5
(G) More than $70,000 add 6
(H) More than $120,000 add 7
(1) More than $200,000 add 8
(J) More than $350,000 add 9
(K) More than $500,000 add 10
(L) More than $800,000 add 11
(M) More than $1,500,000 add 12
(N) More than $2,500,000 add 13
(O) More than $5,000,000 add 14
(P) More than $10,000,000 add 15
(Q) More than $20,000,000 add 16
(R) More than $40,000,000 add 17
(Q) More than $80,000,000 add 18

@ The increase in punishment level

grows logarithmically in the
amount of money stolen.

@ Thus it pays to commit one big
crime rather than many small

crimes totaling the same
amount.

@ In other words, Make the
Crime Worth the Time

	Computational Tractability
	Asymptotic Order of Growth
	Logarithms

