Chapter 4 Trees 44 AVL Trees

4.4 AVL Trees

An avi, (Adelson-Velskii and Landis) iree is a binary search tree with a balance condition.
The balance condition must be easy to maintain, and it ensures that the depth of the tree
is O(log N}. The simplest idea is to require that the left and right subtrees have the same
height. As Figure 4.28 shows, this idea does not force the tree to be shallow.

Another balance condition would insist that every nede must have left and right subtrees
of the same height. If the height of an empty subtree is defined to be —1 {as is usual), then
only perfectly balanced trees of 2¥ — 1 nodes would satisfy this criterion. Thus, although
this guarantees trees of small depth, the balance condition is too rigid to be useful and needs
to be retaxed.

An avL tree is identical to a binary search tree, except that for every node in the tree,
the height of the left and right subtrees can differ by at most 1. (The height of an empty
tree is defined to he —1.) In Figure 4.29 the tree on the left is an avi tree, but the tree on
the right is not. Height information is kept for each node (in the node structure). It can
be shown that the height of an avt tree is at most roughly 1.44 log(N + 2} — 1.328, but in

Figure 4.27 Binary search tree after @(N?) insert/remove pairs C)
practice it is only slightly more than log N. As an example, the avi. tree of height 9 with

We could try to eliminate the problem by randomly choosing between the smallest
element in the right subtree and the largest in the left when replacing the deleted element.
This apparently eliminates the bias and should keep the trees balanced, but nobody has
actually proved this. In any event, this phenomenon appears to be mostly a theoretical
novelity, because the effect does not show up at all for small trees, and stranger still, if ofN%)
insert/remove pairs are uged, then the tree seems to gain balance!

The main point of this discussion is that deciding what “average” means is generally
extremely difficult and can require assumptions that may or may not be valid. In the absence
of deletions, or when lazy deletion is used, we can conclude that the average running times
of the operations above are O(log N). Except for strange cases like the one discussed above,
this result is very consistent with observed behavior.

if the input comes into a tree presorted, then a series of inserts will take quadratic time
and give a very expensive implementation of a linked list, since the tree will consist only of
nodes with no left children. One solution to the problem is to insist on an ex(ra struciural
condition called balance: no node is allowed to get too deep.

Thete are quite a few general algorithms to implement balanced trees. Most are quite
a bit more complicated than a standard binary search tree, and all take longer on average
for updates. They do, however, provide protection against the embarrassingly simple cases.
Below, we will sketch one of the oldest forms of balanced search trees, the avi. tree.

A second, newer method is to forgo the balance condition and allew the tree o be
arbitratily deep, but after every operation, a restructuring rule is applied that tends to make
future operations efficient. These types of data structures are generally classified as self-
adjusting. In the case of a binary search tree, we can no longer guarantee an O(log N}
bound on any single operation, but can show that any sequence of M operations takes total '
time O(Mlog N} in the worst case. This is generally sufficient protection against a bad worst
case. The data structure we will discuss is known asa splay tree; its analysis is fairly intricate.

and is discussed in Chapter 11

Figure 4.28 A bad binary tree. Requiring balance at the root is not enough.

Figare 4.29 Two binary search trees. Only the left tree is avi.

123

i R -.._ - . —-w..-'w;v_-v_w-v.-__p_x u.s:vu_vufu_‘-u TR RN L) uu_v., l.l_n.t..;:.‘c.a_L'-l!l.Us'Ji“l.“l'_’_J \‘__'ul.lul\'.l.l, :
._aﬁd a h.e_!ghi.; ;mba}an_ce requires that os two subtiees’ height differ by two, it is easy to see
that a viclation might occur in four cases: ' ’

I ‘An insertion into the left subtree of the left child of .

2 An insertion to the right subtiee of the left child of &
-3, An insertion into the left subtree of the right child of e.
4. An insertion into the right subtree of the right child of «.

. Cases 1 and 4 are mirror image symmerries with respect to @, as are cases 2 and
,:--Conse.quen{ly, as a matter of theory, there are two basic cases. F,rom a pr i
perspective, of course, there are still four cases. pogmng
.Thn? first case, in which the insertion occurs on the “outside” (i.e.. left-left or righ
gh{}, is fixed by a single rotarion of the tree. The second case ir; *;{rhich the inset%‘ -
ccurs on the “inside” (i.e., left-right or right-left) is handled by th,e slightly more com 110“
?ublf5 rotation. These are fundamental operations on the tree that we'll see used s ? @;
mgs in balanced-tree algorithms. The remainder of this section deseribes these yot €{‘ e
ves that they sulfice to maintain balance, and gives a casual implementation of Eah:eosi

eC. p e deSCIlbeS Oﬂlel baiall €:d," £¢ ek ()dS \yltll }J t()ﬂia[d d o EHEE
Cha {er 12 C {r h an eye
TE C Lli

4.1 Single Rotation

igure 4.31 shows the single rotation that fixes case 1. The before picture is on the left
d_. the alter is on the right. Let us analyze carefully what is going on. Node ky violat '
€ AV, balanf:e propetty because its left subtree is two levels deeper tha.n its I'ighzt subfres
-dashed l_mes in the middle of the diagram mark the levels). The situation depicted s
only polsszble case 1 scenario that allows k; to satisty the avi property before an iIr)lserEiolS
Y}O]ate it afterwards. Subtree X has grown to an extra level, causing it to be exactl iwn
:15_ deeper than Z. Y cannot be at the same level as the new X because then & “}!’o Ig
e been out of balance before the insertion, and Y cannot be at the same level as Z %)ecaise

'y would be the first nod
e on the path toward the root that was in violati
] e s in
o violation of the avr

Figure 4.30 Smallest ave tree of height ©

the fewest nodes (143) is shown in Figure 4.30. This tree has as a left subiree an AvVL treg
of height 7 of minimum size. The right subtree is an avL tree of height 8 of minimum size:
This tells us that the minimum number of nodes, S(h), in an avL tree of height h is given
by S(h) == Sth — 1) + S(h — 2) + L. For h==0, S(h) = 1. For h =1, S(h) = 2. The function:
S(h) is closely related to the Fibonacci numbers, from which the bound claimed above oft
the height of an ave tree [ollows. L
Thus, all the tree operations can be performed in Oflog N} time, except possibl
insertion (we will assume lazy deletion). When we do an insertion, we need to updat
all the balancing information for the nodes on the path back to the root, but the reason tha
insertion is potentiatly difficult is that inserting a node could violate the AV tree property.
(For instance, inserting 6 into the avi. tree in Figure 4.29 would destroy the balance condition.
at the node with key 8 1f this is the case, then the property has to be restored before th
{nsertion step is considered over. It turns out that this can always be done with a simpl
modification to the tree, known as a rotation.
After an insertion, only nodes that are on the path [rom the insertion point to the 1c
might have their balance altered because only those nodes have their subtrees altered.
we follow the path up to the root and update the balancing information, we may find .
node whose new balance violates the avi condition. We will show how to rebalance the trg
at the first {i.e., deepest) such node, and we will prove that this rebalancing guaranteest

the entire tree satisfies the avi property.

€ 4.31 Single rotation to fix case 1

Chapter# Trees

To ideally rebalance the tree, we would like to move X up a level and Z down a level.
Note that this is actually more than the avi property would require. To do this, we rearrange
nodes into an equivalent tree as shown in the second part of Figure 4.31. Here isan abstract
scenario: visualize the tree as being flexible, grab the child node k,, close your eyes, and
shake it, letting gravity take hold. The result is that k; will be the new root. The binary
search tree property tells us that in the original tree ky > ky, so ky becomes the right child of
ky in the new tree. X and Z remain as the left child of I, and right child of ks, respectively.
Subtree ¥, which holds items that are between &y and k; in the original tree, can be placed
as k5 lefi child in the new tree and satisfy all the ordering requirements.

As a result of this werk, which requites only a few link changes, we have another binary
search tree that is an avL tree. This happens because X moves up one level, ¥ stays at the
same level, and Z moves down one level. ky and ky not only satisty the AvL requirements,
but they also have subtrees that are exactly the same height. Farthermore, the new height
of the entire subtree is exactly the same as the height of the original subtree prior to the
insertion that caused X to grow. Thus no further updating of heights on the path to the root
is needed, and consequently no further rotations are needed. Figure 4.32 shows that after the
insertion of 6 into the original avL. tree on the left, node 8 becomes unbhalanced. Thus, we
do a single rotation between 7 and 8, obtaining the tree on the right.

Figure 4.33 Single rotation fixes case 4

44 AVL Trees

A i 1i
Smglesr:;:;r;;niﬂonecli‘ 631 lier, case 4 represents a symmetric case. Figure 4.33 shows how a
sapplied. Let us work through a rather lo ‘
gle 1 ng example. Suppose wi i
an initially empty ave tree and inser i o7 st
sert the items 3, 2, 1, and then 4 through 7 i
anind : the i 2, 1, through 7 in sequential
er. The first problem occurs when it is time to insert 1 because the v praperty is giolated

at the root. We performa sin i
gle rotation between the root and it i \
Here are the before and alier trees: Fleltehidofixtheproblem.

@/%me

after

A das ine joi
.WhiChhfjuilne joins E;e twobnodes that are the subject of the rotation. Next we insert 4
es no problems, but the insertion of 5 iolati . ’
. ; : \ creates a violatio fel f
et ; n at node 3 that is fixed
! eyme?n Ii)gie r;tatmn. Besides the local change caused by the rotation, the programimer must
ber that the rest of the tree has to be informed of this change. Here this means that

2% right child must be reset to link to 4 in
stead of 3, [t - i
destroy the tree (4 would be inaccessible). o3 Forgeting 0 do o s easy and would

')
0" o “"
oo

before e after

- Next we insert 6. This causes a bal
“height 0 and its right subtree would be
“the root between 2 and 4.

an§e problem at the root, since its left subtree is of
height 2. Therefore, we perform a single rotation at

before after

127

44 AVL Trees
128 Chapter4 Trees

The rotation is performed by making 2 2 child of 4 and 4% original left subFree the glew righi
subtree of 2. Every item in this subtree must lie between 2 and 4, s0 this wransformation
makes sense. The next item we ingert is 7, which causes another rotation:

Figure 4.36 Right-left double rotation to fix case 3

exactly one of tree B or C is two levels-deeper than D (unless all are empty}, but we cannot
be sure which one. It turns out not to matter; in Figure 4.35, both Band C are drawn at 1%
levels below D.

To rebalance, we see that we cannot leave ky as the root, and a rotation between ks and
ky was shown in Figure 4.34 to not work, so the only alternative is to place k; as the new
root. This forces k) to be ky’s left child and ks to be its right child, and it also completely
determines the resulting locations of the four subtrees. Tt is easy to see that the resulting

tree satisfies the AvL tree property, and as was the case with the single rotation, it restores
- the height to what it was before the insertion, thus guaranteeing that all rebalancing and
height updating is complete. Figure 4.36 shows that the symmetric case 3 can also be fixed
by a doubie rotation. In both cases the effect is the same as rotating between o child and
grandchild, and then between o and its new child.

We will continue our previous example by inserting 10 through 16 in reverse order,
foflowed by 8 and then 9. Inserting 16 is easy, since it does not destroy the balance property,
but inserting 15 causes a height imbalance at node 7. This is case 3, which is solved by a
right-left double rotation. In our example, the right-left double rotation will involve 7, 16,
and 15. In this case, ky is the node with item 7, ky is the node with item 16, and k; is the
_______ : node with item 15. Subtrees A, B, C, and D are empty.

before

4.4.2 Double Rotation
hlem: as Figure 4.34 shows, it does not work

The algorithm described above has one pro . .
for cas%s 2 or 3. The problem is that subtree Y is 100 deep, and a single rotation does not

make it any less deep. The double rotation that solves Fhe p‘roblem is sh'o_wp. in Flguretﬁj?i;

The fact that subtree Y in Figure 4.34 has had an item inserted into it gualt‘anteestl -
is nonempty. Thus, we may assume that it has a root and two su?ree;:,;. ggniz?:;?; y,ests
tree may be viewed as four subtrees connected by three nodes. As the diag ggests,

before

_ Next we insert 14, which also requires a double rotation. Here the double rotation that
will restore the tree is again a right-left double rotation that will involve 6, 15, and 7. In
this case, k; is the node with item 6, k, is the node with item 7, and ks is the node with
em 15, Subtree A is the tree rooted at the node with item 5; subtree B is the empty subtree

Figure 4.35 Left-right double rotation to fix case 2

129

44 AV Trees

Chapter4 Trees

with item 7, subtree C is the tree rooted at the

; ieinally the left child of the node .
e o 14 the tree rooted at the node with item 16.

node with item 14, and finally, subtree D is

before

thete is an imbalance at the root. Since 13 is not between 4 and Finally, we will insert 9 to show the symmetric case of the double rotation. Notice that 9
causes the node containing 10 to become unbalanced. Since 9 is between 10 and 8 (which is
10% child on the path to 9), a double rotation needs to be performed, yielding the following

{ree:

1f 13 is now inserted,
7, we know that the single rotation will work.

after

Let us summarize what happens. The programming details are fairly straightforward
except that there are several cases. To insert a new node with item X into an avi. tree T, we
recursively insert X into the appropriate subtree of T (let us call this T;g). If the height of
T, does not change, then we are done. Otherwise, if a height imbalance appears in T, we
do the appropriate single or double rotation depending on X and the itemsin T and Ty,
pdate the heights (making the connection from the rest of the tree above), and are done.
ince one rotation always suffices, a careflully coded nonrecursive version generally turns
ut.to be significantly faster than the recursive version. However, nonrecutsive versions are
uite difficult to code correctly, se many programumers implement Avi. trees recursively,

. Another efficiency issue concerns storage of the height information. Since 2ll that is
cally required is the difference in height, which is guaranteed to be small, we could get
with two bits (to represent +1, 0, —1) if we really try. Doing so will avoid repetitive

before @ after

to be performed, and the same is true for the

To insert 11, a single rotation needs : .
: hous a rotation creating an almost pexfectly :

subsequent insertion of 10. We insert 8 wit
balanced tree:

131

Chapter 4 Trees i =
2 * Int ' i
calculation of balance factors but results in some loss of clarity The resulting code is 3 * @pa::}al ?Ezh?fe;‘) t;n::r;nto a subtree.
somewhat more complicated than if the height were stored at each node. 1 a recursive 4 * Gparam t the node that roat; the subtree
routine is written, then speed is probably not the main consideration. Tn this case, the 5 * Greturn the new root of the subtree .
stight speed advantage obtained by storing balance factors hardly seems worth the loss of 6 */)
clarity and relative simpiicity. Furthermore, since most machines will align this to at least 7 iy < .
an 8-bit boundary anyway, there is not likely to be any difference in the amount of space 8 'F ate AviiodeshnyType> insert(AnyType x, AviNode<AnyType> t)
used. An eight-bit byte will allow us to store absolute heights of up 1o 127, Since the tree 9 if(t == null)
is balanced, it is inconceivable that this would be insufficient (see the exercises). 10 return new AvlNode<hnyTypes(
With all this, we are ready to write the AvL. routines. We show some of the code here; 11 yiyper{ x, null, null)
the rest is online. First, we need the AvINode class. This is given in Figure 4.37. We also 12 int compareResult = compare(x, t.el
need a quick method to return the height of anode. This method is necessary to handle the 13 _ b » toelement);
annoying case of a nul1 reference. This is shown in Figure 4.38. The basic insertion routine 14 1f(comp areR:rsu-]t <0)
15 {

is easy to write, since it consisis mostly of method calls (see Figure 4.39).

For the trees in Figure 4.40, rotateli thleftChitd converts the tree on the left to the tree t.1eft = insert(x toleft)

—
2t

on th(.’, nght,reFurn.mgareference to the ntew root. rotatelithRightChild is symmetric. The 17 1f(height{ t.left) - height(t.right) == 2)
code is shown in Figure 4.41. 18 i
R i) o if{ compare{ x, t.left.element } < 0)
The last method we will write will perform the double rotation pictused in Figure 4.42, 19 . . .
) : o t = rotateWithLeftChild(t };
for which the code is shown in Figure 4.43. 20 else
Al t = doubleWithLeftChild{ t);
22 }
1 private static class Avitode<AnyType> 23 else if(compareResult > 0)
9 i 24 {
3 /[Constructors & t.right.= insert(x, t.right };
4 aviNode{ AnyType theflement) 26 if{ height(t.right } - height{ t.left } == 2)
5 { this{ theElement, nuli, null ¥ } 27 if{ compare{ x, t.right.element) > 0}
6 28 t = rotateWithRightChild(t);
7 AviNode{ AnyType theElement, AviNode<AnyType> 11, AviNode<AnyType> rt) 29 else
8 { element = theEiement; 1eft = 1t; right = rt; height =03 } 30 t = doubleWithRightChild{ t);
9 31 }
10 AnyType element; // Tee data in the node 32 else
1 AviNode<AnyType> lefts /] Left child 33 i // buplicate; do nothing
12 Avifode<AnyType> right; // Right child 34 t.height = Math.max(height{ t.left), beight{ t.right))} + 1;
13 int height; // Height 35 return t; ’
14 } 36 y

Figure 4.37 Node declaration for avt trees Figure 4.39 Insertion info an AvL tree

/**
* Return the height of nede t, or -1, if null.
i

private int height (Avltode<AnyType> t)

{

peturn t == null 7 =1 ¢ t.height;

ECIE < N O S SN SV S

| igure 4.40 Single rotation

Figure 4,38 Method to compute height of an vt node

Chapter 4 Trees 4.5 Splay Trees

Deletion in avL trees is somewhat more complicated than insertion, and is left as an

1 31 : | - . | l |
2 /* Rotate binary tree node with left child. exercise. Lazy deletion & probably the best strategy if deletions ave relatively infrequent.
3 * For AVL trees, this is a single rotation for case 1.
4 * Ypdate heights, then return new root.
. . hLeftChild(AviNode<AnyType> kZ)

rivate AviNode<AnyType> rotateWithie i viNo
Do 4.5 Splay Trees

Type> k1l = kZ.left; ‘

) :\; ?Gifén{(ly?i ht; We now describe a relatively simple data structure, known as a splay tree, that guarantees
0 kl. : it = ké‘ o that any M consecutive tree operations starting from an empty tree take at most O(M log N)
n kz.f? ne = M;th max(height(k2.left), height(k2.right) R time. Although this guarantee dees not prectude the possibility that any single operation
1 ki.he'ght = Math‘max(height(ki.left), k2.height) + 1 might take O{N) time, and thus the bound is not as strong as an O(log N) worst-case bound
2 t e;gm' ‘ per operation, the net effect is the same: There are no bad input sequences. Generally, when
;:7; } e ’ a sequence of M operations has total worst-case runuing time of O(Mf (N)), we say that the

amortized running time is O (N}). Thus, a splay tree has an Oflog N) amortized cost per
operation. Over a long sequence of operations, some may take more, some less.

Splay trees are based on the fact that the O(N) worst-case time per operation for binary
search trees is not bad, as long as it occurs relatively infrequently. Any one access, even if it
takes O(NY}, is still likely Lo be extremely fast. The problem with binary search trees is that
it is possible, and not uncommon, for a whole sequence of bad accesses to take place. The
curmulative running time then becomes noticeable. A search tree data structure with O(N)
worst-case time, but a guarantee of at most O(M log N for any M consecutive operations,
is certainly satisfactory, because there are no bad sequences.

I any particular operation is allowed to have an O(N) worst-case time bound, and
we still want an O(log N) amortized time bound, then it is clear that whenever a node is
.-accessed, it must be moved. Otherwise, once we find a deep node, we could keep performing
accesses on it. H the node does not change location, and each access costs O(), then a
“sequence of M accesses will cost O(M - N).

The basic idea of the splay tree is that after a node is accessed, it is pushed to the root by
.a series of avL tree rotations. Notice that if a node is deep, there are many nodes on the path

Figure 4.41 Routine to perform single rotation

Figure 4.42 Double rotation

1 [that are also relatively deep, and by restructuring we can make {future accesses cheaper on
) * Double rotate binary tree node: first teft child . “all these nodes. Thus, if the node is unduly deep, then we want this restructuring to have
3 * with its right child; then node k3 with new left child. ~the side effect of balancing the ree (to some extent). Besides giving a good time bound in
4 * For AVL trees, this is a double rotation for case Z. theory, this method is likely to have practical utility, because in many applications, when a
5 % Update heights, them return new root. ‘node is accessed, it is likely 1o be accessed again in the near future. Studies have shown that
6 =/ “this happens much moze often than one would expect. Splay trees also do not require the
7 private AviNode<AnyType> doubleWithleftChild(AviNode<Anylype> ks) ‘maintenance of height or balance information, thus saving space and simplilying the code
8 { o some extent (especially when careful implementations are written),
9 ¥3.teft = rotateMithRightChild{ k3.left };
10 return rotatedithteftChild{ k3);
1 }

451 A Simple ldea (That Does Not Work)

One way of performing the restructuring described above is to perform single rotations,
jottom up. This means that we rotate every node on the access path with its parent. As an
xample, consider what happens after an access {a find) on k; in the following tree.

Figure 4.43 Routine to perform double rotation

135

